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1. General Remarks.

During the neriod November 1, 1982 to October 31, 1983, the
Princival Investigator, in cooveration with several research
assistants, carried out a vrosram of mathematical research in
the general area of control theory of partial differential ecqua-
tions and began the overation of the Modelling, Information Troces-
sing and Control Facility here at the University of ¥isconsin,
whose initial eaquipment acquisitions and continuing operation have
been funded, in part, by APOSR under Grant 79-0018. The vrogram
now involves three distinct vhases, all of which are under some
degree of develooment. There is the fundamental vrogram of research
on the control theory of distributed varameter systems and the re-
lated orogram of research on self-excited oscillations related to
flutter phenomena, the svecific research vprogram aimed at the dev- {
elopment and imvrovement of control and identification strategies
in connection with wing flutter oroblems, and the new area of distri-
buted vparameter model develooment and calibration in connection
with the MIPAC facility just described.

During the period just noted our work has resulted in two scien-
tific papers which form the greater part of thie revort. The first
of these, "The Dirichlet-Neumann Boundary Control Problem Associated
with Maxwell's Equations in a Cylindrical Region" has been develoved
in connection with the first vhase of our research program and was
presented to the IEEE Conference on Decision and Control in December,

1983. The Principal Investigator is being assisted in further
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develooment of this line of research by Research Assistant Katherine

Kime.

"ﬁ; The second vaver, "Dual Paley-Wiener Svaces and "Regular"

- Nonharmonic Fourier Series" is an outgrowth of earlier work on
the problem of closed loov eigenvalue svecification in distributed

varameter systems of hyverbolic tyve. Research Assistant Yelen

SN Baron, who has been nartially suvvnorted under this grant, is conti-
\
vy nuing work in this area in connection with other classes of distri-
-"I
. o
a2 buted parameter systems.
v . : :
- In addition to those already mentioned, Research Assistants
;.._'
- Richard Rebarber and Robert Acar have received vnartial supnort
f:; under this grant and are continuing work in the areas of relative
" controllability of distributed varameter svstems and coefficient
- identification in distributed parameter systems, resvectively.
‘.J
oy Computational studies verformed with the UW MACC 1110 Comruter
LK
and funded under this grant have enabled us to develop a new and
- effective procedure for identification of the neriod of an oscil-
- latory disturbance, paving the way for adaotive control of certain
e
- flutter ohenomena.
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2. Technical Avpvendices.

The remainder of this revort consists of two technical avven-
dices as follows:
) Apvendix I: The Dirichlet-Neumann Boundary Control Problem
R Associated with Maxwell's Eouations in a Cylin-
drical Region

i; Avvendix II: Dual Paley-¥iener Svaces and "Regular" Nonharmonic
f_ Fourier Series

Both of these are authored by the Princinal Investigator.
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The Dirichlet-Neumann Boundary Control
Problem Associated with Maxwell's

Equations in a Cylindrical Region

This work was also sunvorted in v»nart by the Army Research

Offi_.e under Contract DAAG29-80-C-0041.
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SIGNIFICANCE AND EXPLANATION

This paper concerns the controllability of the Maxwell electromagnetic
equations in a cylindrical spatial region by means of controlling currents
caused to flow on the boundary of the region. Here controllability refers to
the ability to transfer from electric and magnetic fields, given at the
initial instant, to corresponding fields prescribed at a later instant.

Studies of this type are significant in relation to wave guides, EM-pulse

devices, radar non-relective (stealth) aircraft, controlled thermonuclear

fusion and many other important applications.
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- THE DIRICHLET-NEUMANN BOUNDARY CONTROL PROBLEM ASSOCIATED
“ITH MAXWELL'S EQUATIONS IN A CYLINDRICAL +EGTCN

D. L. Russell
1. BACKGROUND.
In this paper we consider a region £ C RJ. not necessarily bounded, having piecewise
smooth boundary [ and almost everywhere uniquely defined unit exterior normal vector
v o= ;(x,y,z), (x,y,z}) @ T. It is assumed that the region & is occupied by a medium
having constant electrical permitivity € and constant magnetic permeability .. We have
then, in 1, the paired electric and magnetic fields

+
= E(x,y,z,t) ,

oI

>
= H(x,y,z,t) ,

k14

having finite energy

A

ee) =W [[] (e1tr? + it )av , (1.1)
Q

‘l ..' ." ‘.l

.
'.'

Y O

where 1 | denotes the usual Euclidean norm in R3. As is well known ([(4), [9]), g and

e 1
I3
PR

*
H gatisfy, in §, Maxwell's equations

IE
curl H = ¢ 3% (1.2)
+
curl E =~y %% ’ (1.3)
aiv E = p , (1.4)
aivii=o0, (1.5)

where p = p(x,y,z,t) 1is the electrical charge density in @ - which is zero throughout
this paper. (That equation (1.5) might eventually have to be modified to account for

magnetic monopoles will trouble us not at all herel)




Control problems associated with Maxwell's egquations have been of interest primarily
in connection with nuclear fusion applications -~ in which case ¢ is not tdentically ~qual
to zero and the Maxwell equations are coupled with the dynamical equations governing the
plasma evolution. In this connection we cite the work of P. K. C. Wang 1291, (30}, [31].
The point of view which we take here is that we cannot hope to treat these more complicated
problems until we have a firmer grasp on the control theory ot Maxw:ll's system in its own
right. 1In this direction some work on controllability with control influence distributed
throughout £ has been carried out by G. Chen (2], [3]. We are primari’y concerned here
with the possibility of influencing the evolution of the fields g and i by means of an
externally determined current 3(x,y,z,t) flowing tangentially in [ so that

3(x,y,z,t)'5(x,y,z) =0 , (1.6)
for (x,y,z) € T where ;(x,y,z) is defined. We will assume that the normal component of
t vanishes outside @ and that no charge is permitted to accumulate on F. Then we have
the boundary conditions (see e.g. [4], [28])
eB(x,y,z,t)*V(x,y,2) = 0 (1.7)
uﬁr(x,y,z,t) = ¥(x,y,2) % S(x,y,2z,t) (1.8)
for (x,y.z) @ T such that G(x,y,z) is well~defined. Here, and subsequently, the
subscript T refers to the component of the vector in question which is tangential to T.
Similarly, the subscript v will denote the normal component (thus (1.7) is the same as
£ = 0). writing
g=£ + & =2 on T,
v 1
G-t + &
v T
¥ = Sv + ST =3 on T,

»
we see that (1.8) becomes uﬁt =V x 3‘, gso that Hr is a vector tangential to I and

perpendicular to - Jt.

The state space in which we study solutions of the above sysctem will be denoted by

HE d(9): it is a closed subspace of the spacn Hg(n) of square integrable six-
[

dimensional fields (ﬁ(x,y,z,:), ﬁ(x,y,z.t)) with the inner product and norm




Te
-
A\
1

féj (eE,-EZ + uff odav

WE A2 = k> (1.9)
Clearly HE(Q) is a real Hilbert space with this inner product. Where a complex space 1s

required, we employ conjugation as usual. The state space () 1is the closed gpan in

Hz,d
>
H‘(m of those continuously differentiable fields (E(x,y,z,t). H(x,y,z,t)) for which

, %, 2 5,

div E = K— + 5—;- + F =0,
» aHx 3Hy aﬂz

div H = e + 3y + 37 0.

+» »
It Eo'ﬁo and E ,H, are two smooth solution pairs for (1.2)-(1.5), (1.7), (1.8),

the first corresponding to Yzo on T, we see easily that

» » >
O.Ho):(E1,H‘)> =
3t af af, off
> 1 0 > + 1 0 +>
fsle (elEyr 3 * 35« B *ullgr 5 * 5+ ¥y 1)av

(using (1.2), (1.3)) =
III (io' curl f, - curl Eef, +curl H o+ B - . curl §1)dv
Q
(using div (E x H) = curl E.d-8.curt )
- [ taiviE x By ¢ aiviE x B lav
1 1 0

2

- ff By < By v B x B ¢ vds = (using (1.7))

h 4 > »
I/ (Eor x "11 * Eor x H!v ¥ Elr x ﬁo: * §1t x l:0\:) vds




TETFTEURTRUNR TOT R T TN U8 T e Tk T T AW W g LT T, W W W,
Pl S Ll P R R - - ) . Padi . "

- - s A L]
{I (EOr x ﬁlt * “1r x HOr) vds

= {(using (1.8) and noting that J % 0 for Eo, ﬁo)

== [[ (Ey » Dras . (1.10)
RO F T
AN
ﬂ.‘--.--
‘.'_'.:_ . >
x;%: If we go through the same computation with Eo,ﬁo,§1,§1 both replaced by the same E,H
N satisfying (1.2)-(1.5), (1.7), (1.8) we find that

g—t-—{.l (Eiﬁ) osds=-{.f Ef. 3(18- (1.11)

Fror Jzo generalized solutions of (1.2)-(1.5), (1.7), (1.8) can be discussed in the

S
%fg{ general context of partial differential equations and strongly continuous gsemigroups. The
and
2{}_ generator
‘\'-‘:J: 1 1
e f A(E,ﬁ) = (E curl ﬁ, - curl E) (1.12)
k 1
e with domai |3 gl =, N oal@n n
}\:‘ lomain consisting of ' in the Sobolev space E,d E.d aving
fﬂ;‘ zero divergence and satisfying (cf. (1.7), (1.8))
A
' Eij =0, #} =0, (1.13)
“lr rlr

is antisymmetric and generates a group of lgometries in Hg ,(Q). (See [32], [33], ([34]
’

for related work.) Sufficient conditions on ¥ so that solutions of the inhomogeneous

system (1.2)-(1.5), (1.7), (1.8) lie in H (1) and are strongly continuous there may be

. E,d
}}}: obtained much as in [18], [19] but it is not easy to specify necessary and sufficient
_&;\‘ conditions. Indeed, this is already difficult for the much simpler, tut related, wave
.t‘ \
CREN equation
' We. 32w 32w 32w azw
N, ue — - + — + —,
. It ax dy z
»
S0
.I\ - - "
AR with boundary forcing terms. We will make some comments related to this in Section 6.
o
{
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. 2, CONTROL PROBLEMS IN A CYLINDRICAL REGION

The main point in this paper is to study the question of controllakility cf the

electromagnetic field ﬁ,ﬁ by means of the boundary current } - Jr' By controllability
<. we mean the possibility of transferring an initial field E(x,y,z,0), A(x,y,z,0) €
“B,d(n)' given at time t = 0, to a prescribed terminal field E(X.y'z,T),
fitx,y,z,1) € Hg'd(ﬂ), specified at t = T > 0, by means of a suitable control current
3(x,y,z,t) defined for (x,y,z) €T, t € (0,T]. Because the homogeneous Maxwell
equations correspond to a group of isometries in Hgld(n), it is enough to consider the
special case wherein

E(XIYIZIO)

"
(=]
-~

(2.1)

fi(x,y,z,0) = 0 . (2.2)
For a given space, J, of admissible control currents 3(x,y,z,t) = Jt(x,y,z,t) defined
on T x [0,T] we define the reachable set R(T,J) to be the subspace of Hs,d(n)
congisting of states reachable from the zero initial state using controls b e J.

Following earlier definitions ({8}, {26]), our system is approximately controllable in

Ve, time T if R(T,J) is dense in Hp d(Q) and exactly controllable in time T if
-" .
‘A
o oY R(T,J) = H () (or some precisely designated subspace of HE ).
Al E,d ,d
;3’. At this writing we are not able to discuss the general three dimensional problem

>
' wherein the vector fields E and A are unrestricted, except as stipulated heretofore,
and @ has a general geometry. We hope in later work to consider at least some three

dimensional cases which arise for special domains {. But for now we must content

?}_ ourselves with the case in which @ 1is a cylinder:
-y
2

- Q=Rx (=,o) = {(x,y,z)]|(x,y) € R C R°, z real}
Q‘C' where R 1is an open connected region in R? with piecewise smooth boundary B. Thus
e
o 3 = IR x (=, ®) = B x (-=,») ,
-

Even here we can give results only for special two dimensional regions R.

Rt

The two dimensional problem in the cylinder = R x (~=,»} occurs when we confine

e,
L

attention to fields

P

P

+> > » >
E = E(x,y,t), H = H(x,y,t)

T, % e,
(XS

1€

.‘A.‘
S
1
w
t
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which do not depend on the coordinate z
direction of the cylinder.

that E., H,,

the field components in the =z

corresponding to the axial, or longitudinal,

(Note that this is not at all the same thing a3 requiring

direction, should be zero.)

correspondingly consider only control currents

+ -
J = J(x,y,t)

which do not depend upon z.
0Of course the energy E in

are not identically zero. We redefine

igs infinite under the above circumstances if

E to be the energy per unit length of cylinder:

E(t) =% [[ (erEx,y,0)1° + utfiix,y, )12 )dxay .

R

The space HB,d(Q) i3 now replaced by Hg’d(n). Because
QEZ(X,Y,t) : o 3“z(lelt) 0
9z - 3z -
we have
9E 9E EL 3H
iv B o= o X J e X4+ X
div E % + 3y ' div H = 3% + Iy

The curl expressions simplify to

9E dE JE 3E
z X

+=(
curl E 57

1=
cur 3y ax ‘

so that the equations {1.2),

z
A TR dy ] !

(1.3) become

H aH_ 3H_  AH
zZ z ____y- - X
Ix 3y 4
JE dH oH 3E
(1) & — = 2 (iv)  p — = - —Z
t y at dy
IE M M IE
. y_ _ =z y .z
(i) e 3~ ax (v w at ax
JE 3H oH oH 9F JE
i _z L _¥Y_ __x D QRN .
(itl) e == 37" 73 (vid v 5w x| 3y

-6-

™ w i v -— s r'v,_'v"-"’"
Cte e dou Ban DAY Aen Ron Sen Sen B3 0 A pracies St SL o L b e AP ACIICIMAZAA ReSt R S

We

g, A

(2.3)

(2.4)

(2.95)




It is clear from (2.5), (i)-(vi), that if E(x,y,O), ﬁ(x,y,O) are given, then the

Jubsequent evolution of Ez(x,y,t), Hz(x,y,t) determine all of the other components. As
for these components themgelves, differentiatinc ‘2.5) (iii) and (2.5) (vi) with respect
to t and then substituting {(2.5) (iv), (v) and (2.5) (1), (ii) into the respectively

resulting expressions, we obtain the familiar wave equations

3 Ez 3 Ez 3 Ez

pe 5 = 5=t 5 (2.6)
at Ix 3y
azuz a%g aznz

ue = Z 4 . (2.7)
at ax 9y

valid for (x,y) € R, t e [0,»), provided E,, H, have enough derivatives, or provided
the equations are interpreted in the distributional sense. Assuming the initial states

+
E(X:YIO). H{x,y.0) are divergence-free, we compute (cf. (2.4))

, 9  3E
e 5 GZ+ 5;*) = (using (2.5) (i), (11))
aznz azuz
“(zay ~ ayax) " °
and similarly
) M, A
UE(F*W)ao

and we conclude that the fields remain divergence-free for all time.

>
Suppose, then, that divergence-free initial states B(x,y,0), Hix,y,0) are given.
3E

Then Ez(x,y,O), Hz(x,y,O) are known and (2.5) (iii), (vi) determine 5;5 (x,y,0) and

IH
—= (x,y,0). If (2.6), (2.7) are then solved with these initial conditions, and

it
appropriate boundary conditions, the complete solution of Maxwell's equations (2.5)
(4)-(vi), can be obtained by integrating (2.5) (i), (ii), {(iv), (v). Thus it is enough to

work with (2.6), (2.7), and it should be noted that the divergence condition does not have

any bearing on E_, H,; {t can be ignored henceforth.
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Figqure 1. The Region IR

It is important to recast the boundary conditions (1.7}, (1.8) so that they provide
boundary conditions for (2.6), (2.7). We ask the reader to consult Figure 1, where the
region R with boundary 3R = B ig shown. At a point (x,y) € B we let Vo= Six,y)
denote the unit exterior normal to B and we let & = a(x,y) denote the positively
oriented unit tangent vector tc B there. With f, the unit vector in the positive =z
direction, 3, 3, t form a positively oriented orthogonal triple of unit vectors. Given
an arbitrary vector w we can decompose it as

w o=

= (w ,w_,w
w vV T
+ 2 2 2 2
Iwl™ = w© + w_ + .
v v a” Yz

(=~_)) ,
z

The tangential part of ﬁ. which we have designated as ﬁt' may now be represented as

>
- + .
ﬁr sz Hca (2.8)
and the current }. 31 may likewise be represented as
b4 »
- + .
3r ch Jaq

Then

-8-




VxFaldxd =0 x 3 f+3F) =-35+3¢ (2.9)
T z g z g

Combining (1.8), (2.8), (2.9) we see that on B

Hz(x,y,t) = Jc(x,y,t) B (2.10)
Hylx,y,t) = =7 (x,y,t) . (2.11)
+* >
Represent V, 0 as
> »
b=vis v A, (2.12)
> > +»
= + = - . .
1 oxE o R vyl + v R (2.13)
Then compute
aEz asz 322
=V t+t—vVv = 1.3 2.13
v 3x 'x '3y Uy - (using (1.3), (2.13)

3H 3Hx 3H

- .___Y_ + - __Q
¥3E % TVaE % "Mt

an
= (using (2.11)) = - Yo (2.14)

The equations (2.10), (2.14) provide the needed boundary conditions for (2.6), (2.7)

respectively. For H, we have the Dirichlet-type boundary condition (2.10) while for

E, we have the Neumann-type boundary condition (2.14). If we let

> 3y
U(x,y,t) = "a? (x,y,.t) ,
>

5 = ﬁt = 003 rut,

and differentiate (2.10), we have the more symmetric form

aﬂz 3Ez
ETE (x,y,t) = Uq(x,y,t). F ol -Uz(x.y.t). (x,y) eB . (2.15)

We complete this section by discussing the question of expression of the energy per
unit cylinder length, (2.3), solely in terms of H, and E,b.

We consider the equations (2.6), (2.7) with homogeneous boundary conditions

3Hz 3E

k4
3t (Xevet) =0, 3= (x,y,t) =0, (x,y)esB.




H4N

are) s’ fa
s
LG4

'L
:ﬁt}

We use the symbol A for the Laplacian:

Initially we take H E, to lie in the Sobolev space HZ(R). This space must be

z’
-1
decomposed in order to attach a meaning to 4 .

The boundary condition for H, may be rewritten as

Hz(x,y,t) = h(x,y), (x,y) eB,
where, by the trace theorem, h € HJ/Z(B). Then we can write
Hz(x,y,t) = ﬁz(x,y,t) + iz(x,y)
where ﬁz(x,y) is the solution of
8H_(x,y) = 0, H (x,y) = hixy), (x,y)eB

and

Hz(x,y,t) =0, (x,y)eB.

-1 »
The inverse Laplacian A4 is well defined on the functions Hz- For E_,Z we may write

z

Ez(x,y,t) = Ez(x,y,t) + Ez(t)

where Ez, as indicated, is constant with respect to (x,y) € R and
f E,(x,y,t)ds = 0 .
B

It is well known that A-‘ is well defined on the functions Ez.
We proceed first on the assumption that
Hz(ervt) = HZ(XIYIt)I Ez(xIYIt) = Bz(xoY:t) .

We form new solutions of (2.6), (2.7) by setting

aG aF

z k4
—_— = =F —_— =
¥ 3 z' €3¢ H, v

We then determine Gy Gy, | J Fy, ugsing the equations (2.5) with & replacing ﬁ. 2

replacing ﬁ. so that F and & satisfy Maxwell's equations:

-10-
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Jg—§= -curl F
NS
P »

_j‘: € —:—% = curl é
o It will then be found that
> > »

- E = curl F, H'C\ltlé.

:.*J Following this, (2.3) can be written as

- B(t) =Y [f (etcurl 12 + utcurl &12)axay

" R

w'\‘

S . F, 2 IF, 2 fx aF, 2
5 - /2£/ (53 + i) +GE -5 ]
N 3,2 3G _2 3G 3G 2

hrd + u[(s(—) + (3—y—') + (Ex - W) ]dxdy (2.16)

2

1.::' Then from (2.16) we have

-\_1::
{ , ¥, 2 IF, 2 3G, 2
;;& E(t) = /2£f {el(z77) + (5;‘) + (w3) ]
- 36,2 3G, 2 ar, 2

N + U[(g;—) + (g—) + (e W) 1} axay
oty

O ; aF, 2 3F, 2 5

s = /2£f el + (W) + (£)7]

o
]
P

an 2 an 2 2
+ u[(r) + (F) + (Hz) ]dxdy

Now consider the quadratic form (for E, = Ez)

g RAR
N4 5
TR U

-11-
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'aEz -1 E_ 9 Gz - 3 Gz
R G U By
3t it
¥,
= (since G, satisfies the wave equation UE = &G

- at

and the boundary conditions G,{(x,y,t) = 0, (x,y) € B) =

1 1 an 2 an
2 (-AGz'Gz) T3 [(3x ) ¢ (By ) ]
ue Ue
Similarly
IH 9H aF_ 2 aF_ 2
z -1 z 1 z z
G 7w A G ) )

from which it follows that

xe) =Y ] (e [(gt, 07 p2) + (ks -4 2] + e ? + winlaxe
(e =7 ) 1we) g se) Yl 4 apll T elE) Ml haxdy

1 ) finjte states -~ a fact which will be very careful later.
It is necessary to modify this expression for general E,, H,. We begin with
E,(x,y,t) = E (t) .
asz

The only possible solutions of the wave equation (2.6) satisfying 3v |8 = 0 and having

this form are
E,(x,y,t) = ey + e4t

where e, and ey are constants. (Such solutions are consistent with a constant boundary

current J for which J, 3 0.) The corresponding E,., Ey, H, are zero but

= ®, MW,
::, Ce"ew'ax —T.

2"a"e s

It is not possible to express this quantity in terms of E, itself or H,. It is better

'. l’ .
o
s e

- )4
IO to leave it in the form € 522- Solutions of Maxwell's equations with E, having this
JE
form have energy expressible as a quadratic form in E, and 5§E°

-12-
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5& . Hext we corglder H, = ﬁz as :epecribed earlier. 3uch a gclutisn 2 consigtent with a
.‘.:...
RSN soundary currant for which Jr = 0, <constant with respect to cvime dut possibly varying
KOAN
:f:’ @1th (x,y} 2 5. We miy take H_, Hy’ E, all zero. However,
- ;' 3, auz asy M,
L € sm T e £ ot m -
TS t 3y ’ at 3x
NS
Y 3 Y £ a E sl t : associzted with
\::; 30 we may no*t assume that x 4an v are equa o zero. The enerqgy assoclzte
SR
e solutions of this type is expressible in terms of
) BHz 2 BHZ 2
" [11GF) + (557) laxay
PO ax 3y
_\:.‘-' R
(g
'\i~ it integration with respect to t is permitted. 1In the sequel we will not explicitly
ol
&, consider the timewise linear electric flelds satisfying the above eguations.

We see then that a norm involving only E, and H, and compatible with the energy

(2.3) may be expressed as

' l2 _ II 2[(3éz _A-1 3%2) + ( ﬁz -A-‘ aﬁz)] + (é )2 . (; )2
h A T ECR S T 3e ol T ey T,
__..J - IE, 2 9F, 2 3 2
::,: Po(E,)" + °1(€€') + °0L5§—) + O!(i;_) Jaxay (2.17)

where PysP 9.0, are positive numbers. It will be seen that th's is a weaker norm than

the one associated with a pair of wave equations, viz.: -
2 aEz 2 Hz 2 2 2
+ + + $VH 1 jdxdy . .1
(e, 0 1" = l{[ {vel(559) (557) 1 + 1ven N faxay (2.18)
asz anz
we wi'l denote the Hilbert space of states E,, Hys Fyed 32— lying in Hi(R), H’(P),

LZ(R), L2(R), respectively, by H. This space will be very conveniert for use in the

remainder of this paper. In some cases we will add boundary conditions to the
g specification of H, the space with norm 1 !, without changing the symbol, to correspond

-
.

$\- to an agreed specification of the states in H by similar boundary conditions.

ey

-13~
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3. SCME CONTROL CONFIGURATIONS

we describe here two possible reulizations of the contrel problem wnich .e have posed

and indicate why we have chosen the machematically more interesting (i.e., more difficult)

one to work with in this paper. ' )
Let us assume that [ = 3 = B x (-w,w)
i3 covered by one or more layers of conducting

bars, arranged in rows as shown in Fiqure 3.1.

In the case of a single layer of conducting

O hars shown in Figure 2(b), the bars are arranged
¢":‘ 4 x

Ll so that they make an angle 8, 0 < [8] < EL
= .

W with the vector 0 (cf. Figure 1), while in

the double layer case (Figure 2(a)) they are Figure 2(a). Double Layer Control

arranged so that the bars in the second layer

] - =0
make an angle ¥, 0 < [§] < 3+ ¥ #6, with (\\‘5\——_—__—————’//}
the vector 5- The current in any row of bars

parallel to the z-axis is independent of z;

o A
v T
'f::, i.e., constant for all bars in that row. As S . el L
A -
i\i we consider successively smaller bars we e —-— -
N -
; obtain, as an idealization, the boundary
1
: :- current vector !
{:\' Figure 2(b). Single Layer Control
»o!
Y
A, > >
AR Six,y,t) = J(x,y,t)(cos 83 + sin 8F) (3.1)
*
N in the single layer case, J(x,y,t) denoting the current strength with the sign determined
-_. . »>
o so that J positive yields a positive current component in the O direction. The
A
L
au; corresponding tormula in the double layer case is
(;J > » . »>
o Jix,y,t) = J‘(x,y,t)(cos 80 + sin 87)

v,
Whnt

+ Jz(x,y,t)(cos 03 + gin WE) . (3.2)

The current components are, in the single layer case

%
Yt

‘l~

Jo(x,y,t) = J(x,y,t)cos & ,

.,“..

¢

Jz(X,y,t) = J(x,y,t)sin 8 ,

»
»h

L
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and in the double layer case,
[Jc(x,y,:)} o8 § cosg ¥ ] [J1(x,y,t)
= ‘ ! €3.3)
Jz(x,y,t) sin 8 sin ¢ | { Jz(x,y,t) L.

Thz determinant of the matrix in (3.3) is sin (y - 8) # 0 if ¢ 2 0 {n the rance

. x n
0 < |8] < 50, 0 <l < 3 Thus in the double layer case J_ and J, ure independent

r

Sy and J, are independent while in the single layer case J and J are fixed

a z

non-zero multiples of each other.

The double layer case is easily disposed of in the light of earlier work on boundary

control of the wave equation. Referring back to (2.10), (2.11) we now have, tor

(x,y) @ B =3R, t e [0,»),

dH
3;2 (x,y,t) = Uo(x,y,t) = cos 0 u‘(x,y,t) + cos ¢ uz(x,y,t) R

3E

535 (x,y,t) = -Uz(x,y,t) = -gin 8 u1(x,y,t) + cos ¥ uz(x,y’t) '

3J1 g
U‘(X:Y't) = 3—€_ (XIYIt)l uz(lelt) = F (x,y,t) .

Since U, and U, are independent if u, and u, are, the control problem splits into

two uncoupled wave-equation problems, one for E and one for H_. These have been
P P z z

discussed thoroughly in (2}, (31, (1S5}, (16}, (22}, (23], (25) with affirmative
controllability results for various control configurations and will not concera us further
here.

In the remainder of this paper we study the single layer case. 1If we let

3J
. = 3T oY (3.4°
ulx,y,t) TS (xX,y,.t)

#€ now have the wave equations (2.6), (2.7) for E,, H, and the boundary conditions
M
z aJ -
TS (x,y.t) = cos 8 3¢ (Xey.t) F @ ulxy.t), (3.5)

.« . .

[N
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3E

z 3J
-z = - g 22
v (x,y,t) sin It

(x,y,t) 2 B ulx,y,c) . (3.6)

The control problems for E, and H_ are now coupled because the single control
function, ulx,y,t), appears in the boundary conditions fcr both Ez and Hz; we have to
contol both systems simultaneously using the same control function.

If we rely on experience in a single space dimension, which has proved generally quite
helpful in the control theory of a single wave equation, we are led to believe that systems

like (2.6), (2.7), (3.5), (3.6) may, in fact, be controllable. Replacing u(x,y,t) by

ugle), uyg(t) and taking 0 € x € 1, the one dimensional equations are, using variables

v, w,
2 2
v v
o — 3= o, (3.7)
t Ix
v 0 - v 1 -
3t (0,t) Quo(t), 3t (1,¢) uu1(t) ’ (3.8)
2 2
pi—-;-a——;=o (3.9)
it Ix
23(0 t) = -fu,(t) —a—"-'-(it)=Bu (t) (3.10)
ax ! Yo ! 9x ’ 1 :
3w . . .
(note that - x corresponds to the exterior normal derivative at 0]. Letting
3=-;—: (3.11)
;=_g_‘;' (3.12)
we find that
2~ 2~
3
pa—-‘zi-—-‘25=o, (3.13)
t Ix
and
2~ 2~
pa—g-a—-‘g=o. (3.14)
it Ix

Differentiating (3.1%) with respect to t and using (3.8) we have




(I

e N

¢
=)

2 -~
137 1 9
13y (0,t) = 13y (0,t) = 2 atie) "3.17)
o] 3x2 p 3x 2 0
13° av
3, 1
- e ==X (1,e) = 2y, (3.16)
o ax2 p 3Ix 1
while differentiation of (3.12) along with (3.10) yields
a” 3w
kot = ¥ = ~gy'
3t3 (0,t) % (0,t) Buo(t) . {(3.17)
2 ~
I w Iw
—_— - t ’
383 {1,¢) Tx (1,c) Su1(t) . {3.18)

Combining (3.13) with (3.14), (3.15), (3.16), {3.17), (3.18), we see that

~ a ~

~ q~
Bv + i gv - i both satisfy the wave equation and

g+ 2 D0,e) =0, 2 8V 21,0 = 2B iy,
Ix Ix o [} 1
3 B Tad = 208 ., 3_ gy _ga> =
% (Bv o w)(0,t) 5 uo(t), = (Bv > w)(1,t) 0.

W are both of Neumann type and are

vir

Thus the control problems for Bv + % W and B8V -

uncoupled. Affirmative controllability results are then available from {20}, {21}, [24].

~ ~ ~  q -~
If we replace ug(t) (or u1(t) by C in the above, then B8v = % w (or v + ; w)
will become completely uncontrollable and our original system must therefore be

uncontrollable. This result at first seems to predict failure for the enterprize which we

now undertake for the two dimensional case.

17~




3. APPHOXTMATE BOUNDARY CONTROLLABILITY

1y 4 wimple change of gcale in the ¢t variable, aad renaming of the independent

xr1-blev, we may assame .hat the system of interest is

Bzv - 32v . 32v (4.1)
2 2’ :
It Ix dy £ > 0
5 (x,y) € R,
3w 32w Bzw
= - __3 + _—E , (4.2)
t”  Ix dy
«1th boundary conditions
v
3t (x,y,t) = aulx,y,t) (4.3)
t>0,
(x,y) € B = 3Q
%% (x,y.t) = Bulx,y,t) (4.4)

Wwe will not, in general, assume that u(x,y,t) can be selected at will for all values of
(x,y,t)} shown. More on this later.
Because the system is time reversible, it is sufficient to analyze controllability in

terms of control from the zero initial state

vix,y,0) = %% (x,y,0) =0, (4.5)
(x,y) € R,
dw X
wix,y,0) = ETS (x,y,0) = 0, (4.6)
t
{ to a final state
e
e
~ v
i vix,y,T) = vo(x.y). 3t (x,y,T) = v, lx,y) (4.7)
-
< (x,y) € R .
o, AIw
}. wix,y,T) = wo(x,y), 3t (x,y,T) = W,(x.y) (4.8)
-
)
~l
.
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wWe nave noted in Section 2 that the ) i~ finice states are don,e 11 cac 4 b= finien

states. In the present contexsz this means that .o can work with toe niltort apice of
states v, ¥, w, ¥ Lien the o a
~ ' atl ’ at w The nner o5ro uct
v Jwy o~ v ~ 2w
({v, T TR (v, e W a:J)
~ ~ - ~ A L~
- () (R Ay, 2w dw  dv3v dwdw  dv v 3w By, .
2 t 3t t ot x 3x X Ix 3y dy dy dy*

a space which we will refer to as H. The norm is & ¥ (cf. (2.18)) with ue = 1. Ag we
have indicated. this is a dense subspace of H, the Hilbert space cbtained by use of the

norm b U (¢f. (2.17)),

-

The final states (4.7), (4.8) are not quite arbitrary in H if the control u is
rastricted go that its support is contained in a proper relatively closed subset By< B.
Since the condition

%% (x,y,t) = a ulx,y,t), (x,y) €8

applies, we may as well adjoin the additional condition

vglx,y) =0, (x,y) € B~ By £ By . (4.10)
The traca theorem {[1], [19]) assures us that this describes a closed subspace of H,

-

which we will call H1. The only restriction on H1 is (4.10); vy 1is permitted to have

arbitrary values in H1/2(B,) and wq, wy are unrestricted in H‘(B), HO(R) = LZ(R),
respectively.

Let U be a given space of admissible control functions, about which we will shortly
have more to say. For each control u € U we assume the existence of a unique sclution

w, of (4.1)-(4.6) for t > 0, (x,y) € R. Very general sufficient conditions for this

v
u’” Tu

to be the case are given in [(19]. We define the reachable set at time T, R(U,T), to be
v dw

ST (%ey,T), wylx,y,T),

Y {x,y,T) which may ke

the set of all final states vu(x,y,T), 5;”

realized {n this way. The set R(U,T} is a subspace of Hy if U is a linear space,

which we will assume, and our system is approximately controllable in time T if PR(U,T)

-

is dense in H1 (then R(U,T) 1is also dense in H because [ t 1is a weaker norm than

1§ and1 H 15 dense in H). Evidently R{J,T) 1is dense in H1 Jjust in case, glven an

-19-
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arbitrary state (VO'V1'VO’H1’ in H

v Jw
' u u ~ o~~~ i
{(Lvu(x,y,T), T (x,y,T), wu(x,y,T), T (x,y,T));(vo,v1,wO,w1)) =0 ,
“eU}’>WyHNyﬁ)=°- (4.11)

Let v(x,y,t), wix,y,t) be the unique solution of (4.1), (4.2) satisfying the terminal

conditions at time T:

~ ~

-~ -~ ~ 3 ~
vix,y,T) = v (x,y,T) = vl, w(x Y,m) = w il (x,y,T) = w

o’ 3t 0’ 3t 1 (4.122
and the homogeneous boundary conditions
v
5: (x,y,t) =0, (4.13)
(XIY) e B, t >0 .
3w
v (x,y,t) =0, (4.14)
Computing the quantity
a 3v 3w
E; ((V (folt): (x,y,t), w (xIYIt)I (x'Yot)) H

-~

23 . 3
(V(XIYIt)I 3! (x,y.t), w(XIYIt)I s% (xIYIt))) ‘

using familiar duality theorems involving the laplacian and integrating from 0 to T

(see [22], [23], [26] for details in the case of a single wave equation) we see that

av 3w

u ~ Re A A
((Vu(x:Y'T), SEE (x,y,T), Wu(X,Y,T), EE" (x:Y;T))i (V01V11W0:W1))
Iv 3vu v avu
= g f [5— (x,y,t) v (x,y,t) + Iv (x,y,t) T (x,y,t)
B
3~ aw % Bwu
+ EYYy (x,y,t) (x,y, t) + Iv (x,y,t) T (x,y,t)]dsdt . (4.15)

Then using the boundary conditions (4.3), (4.4), (4.13), (4.14) we see that the above

-20-




reduces to

» -~ ~
&

dv dw
[ ] 130 trovat) + 8 57 (,y,e) Jule,y, b)dsae . (4.16)
0 B -
': I{, as discussed abov:, we suppose that B8 has the <isjeint decomuosrition

o B = By 'J By ,

- w@ith By relatively open in B, and that ul(x,y,t) 2 0, (x,y) @ By while on By u 1s

unrestricted save for the specification of the admissible space (e.g., we might take
u=cs, x (0,7, v=1ti(B, x (07D , (4.17)

or any of many other possibilities), and if we suppose the first equation in (4.11) to

hold, we conclude that (4.16) vanishes for all u € U. We know from the trace theorem

({1], {19]) that the partial derivatives

AN

A L’ v’ AL’ v’

-'.-! !

:I restricted to B, all lie in #'/2(B) for te [0,T] and vary, with respect o the norm

o
[
PR
L DN

in that space, continuously with respect to t, 1i.e. they lie in cV/2(my; {0,T]). Wwe
= suppose, as is the case for (4.17), e.g., that U includes a total subspace of the dual

space cf C(H1/2(B1):[0,T]). Then the fact that (4.17) is zero for all u € U implies

~ ~

s v 3 :
A a5p (ny,t) + 835 Goy,t) =0, (x,y) By, te (0,T] . (4.18) ;
We alsoc have {(cf. (4.13), (4.14))
at (x,y,t) =0, ™ (x,y,t) = 0, (x,y) By, te (0,7T]. (4.19)

e The boundary values of v and w are therefore overspecified on B, X (0,T). The procf

:J? of approximate controllability, where it can be carried through, depends upon being able tc

AN

Njﬂ use this overspecification to show that

T 0N

HO] v(x,y.t) £ 0, wix,y,t) 20, (x,y) €R, te (0T,

and therefore to conclude that the implication (4.11) is indeed valid so that R(U,T) is

-

dense in H1 and hence in H. We carry this argument out for the case in which R 1is a

rectangle and By is one of its sides in Section 5.
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Following the development in (6], it may be seen that our system is exactly

- 2 .
controllable in H,: us ng the control space U =L (B1 « {0,TiI). sust in case
av A ~ . m a
Ia a‘:‘ + 8 3}:’-1 5 > KUYV v w ), (4.20)
L (B"‘[O,T]) H

for some K > 0. 1In general this is a very difficult result to obtain but we are able to
obtain exact controllab.lity, by other means, for the case where R 1is a disc 1in R?

and By = B is its boundary, a circle. This result is developed in Section 6 where it

will be seen that it is heavily dependent on certain properties of the Bessel functions.
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5. THE CASE R = A RECTANGLE, By = ONF SIDS.

The work here can be carried out for a rectangle with arbitrary dimensions, but all
essential ideas are contained in the notationally simpler case
R = {{x,y)]0 < x<n, 0<y< x}
to which attention is restricted nenceforth. We will agsume that By, the portion of the
ncundary on which control is exercigsed, is one side of R, without loss of generality it
15 the set
B, = {(n,y)]0 <y < x} . (5.1)
We cconsider thon ¢, w satisfying (4.1), (4.2) in R x (0,T] for gsome T > 0, and also

satisfying boundary conditions

~ ~

v dw
™ (x,y,£) =0, v (x,y.t) =0, (x,y) € B =23R, t € [0,T] , {5.2)
v aw
a ™ (r,y,t) +8 *t (x,y,t)
= BE (m ) + 8 EE (n ) =0 0 < < 0,T) 5
= a Ix 'Yt It ¥t ’ Y n, t e [ ., T . (5.3)

We may assume without loss of generality, since the wave equation is time reversitle
with either Dirichlet or Neumann boundary conditions, that v and w are extended to
satisfy (4.1), (4.2) on -®» < t < ®» and that the boundary conditions (5.2) hold for
(x,y) €B, te (-=,#), We may not assume that the boundary condition (5.3) is applicable
beyond [0,T], however, if controls are restricted to have support in By x (0,Tl. Let

6§ >0 and let s{t) be an arbitrary function in c®(~»,») with support in (-6,8).
Define

vix,y,t) = f s(t - t);(x,y,r)dr y (S5.4)

wix,y,t) = [ s(t - t)wix,y,1}dt . (5.5)

Then v, w are golutions of the wave egquations (4.1), (4.2) satisfying boundary conditions

-23-~
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v 3w
s; (x,y,t) =0, v (x,y,t) =0, (x,y) @B = 3R, - <~ i » (5.6
while
ad (vt +8 X (myt) =0, 0O<Cy<w, tel(s T-8 (5.7)
Ix YT 3t Y [ Y ' ' I .

- -

L4
Moreover, it can be shown that Vv, w are of class C for (x,y) € R, —= <t <=, [f we

can show Vv £ 0, w I 0 for any such choice of s, then v 2 0, w = O.
Let ug define, for (x,y) @€ R, -= < t < =,
v 3w
= —— + _— . .
${x,y,t) e 5 (x,y,t) 8 Ty (x,y,t) (5.8)
From (5.7) we have
¢(m,y,t) = 0, 0K y<w, tei(§, T~-56). (5.92)
Since a and B are constants we have
2 2 2
2—% = 3—% + 3—%, (x,y) €R, -=» <t (wm, (5.10)

Y
o
-4
%

Q»

Yy

Let us note that, since Vv satisfies the wave equation in R U B,

a 332 ( ) + B izi_ ( t)
2 (XYt Stax Y
at
2 24 2+
v Av 3w )
= G(-——-z- (x,y.,t) + —3 (x.y.t)] + 8 5% (x,y.t) - (5.11)
3ax dy

Setting x =% in (5.11) and differentiating the identities in (5.6) with ®espect to t,
we see that the left hand side vanishes. Then, comparing (5.11) with (5.8)
) 2%y
3—3 (¥,y,t) = < —5 (M,y,t) Taly), 0<&y<n, §<ecCT -5, (5.12)
3y
the last identity being valid as a consequence of the first condition in (5.6).
The two conditions, (5.8) and (5.12), satisfied by ¢ at the boundary x = ¥ enable

us to uge Holmgren's uniqueness theorem (see [5] or [13], e.g.) in much the same way as it

A

1




()

[N}

<1y used 1in the proof of the approximate controllability of the wave equation in {22},
to gee that if
T>2 + 28 5.13)

then $ mugt be independent of t for 1 +3 <t < T~ 1~-8§, i.,e.

dx,y,t) = d(x,9y), (x,y) €R, 1 +8 << T-=-1-38. (5.14)

- -

Because Vv and w satisfy the wave equation in R with the homogeneous boundary

L) x
conditions {(5.6), and are of class C in RUB, we have C - convergent expansions

A s

- - ® ® iw, o et
vix,y,t) = v_{(x,y) + Z z (v, .e I+ e 3 )sin kx sinjy . (5.15) o
0 . k3 k3 .
k=1 j=1 .
R - w iw e -iet
wix,y,t) = w_ + 2 Z (w e 7 +tw e ] ]cos kx cos jy ., (5.16)
0 . X3 ki
k=1 j=1
where
2 2
= +
Yk k . (5.17)
R ® .
Vo(x.y) is a C function in R U B such that (cf. (4.10))
volxey) =0, (x,7) €B - {tx,y)10 < y < n} (5.18)
and w7, is a constant. Then, from (5.8), 1
4
- d
v lnyy) 1
$(x,y,t) ~ @ ——— =
r r ax
1
© @ iw, .t ]
_ . . L9} 1
= Z cos kx[ z {akv, .sin 3jy + iBw .w .cos jyle
. LS k) k3
k=1 j=1
g -imkjt
+ s s : .
L (akv, isin jy - iBu w ccos jyle 1. {5.19

3=1

I:
L
..1

still Cm° convergent for (x,y) € RuB, == <t <*®. Noting (5.14), we see that the

left hand side takes the form

- 3v0(x,y) 3vo(x,y) -
- $(x,y,t) = @ ————— = dlx,y) = @ ————— = ¢{x,y) ,
5
’y ;
o 1+8<cecr~1 -3, (5.20)
-‘ ]
q
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We r . strengthen (5.13) to
T >4 + 26 (5.21)
and we gee that the time interval in (5.14), (5.29) has length > 2, 1i.e.
T~ 1 =8 (1 +8) =T~ (2 + 28 >2. (5.17)
. /2
Since the functions 7 €08 kx are orthonormal on 0 < x < v, we conclude from (5.19),

(5.20) that for k = 1,2,3,...

: iwkjt
v o+ .
)i1 (akvkjsin jy iBwkjwkjcos jyle
o - _ -iwkjt
+ iy - 3
321 (Gkvkjsin jy 1Bwkjwkjcos jyle
2 "
=5 f d{x,y)cos kx dx = Ok(y), 1 +8§<t<T-%-8§. (5.22)
0

Classical results of Levinson and Schwartz ((17], (27}), which have frequently been
used in control studies of this type (see, e.g., [12], [21]), can now be used to show that

for each fixed k, the exponential functions

tiw .t #id k2432 ¢

e x3 = e ’ 3 =1,2,3,...,

together with the constant function 1t are strongly independent in Lz(I) for any
t-interval I of length > 2. This clearly contradicts (5.22) unless we have
Ok(y) 0, 0<y<r (5.23)
and
akvkjsin jy + 1Bmkjwkjcos jy =0, 0<y<w, j=1,2,3,....

But then, since for each j sin jy anrd cos jy are independent on 0 < y < x» and since
none of a, k, B8, mkj are zero, we conclude that

v, . =0, Wiy = 0, k=12,3,..., 3=12,3,.... (5.24)

Since (5.22), (5.23) show that

dix,y) = z ® (ylcos kx = 0 ,
x=1 K

26—
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{5.19) gives R
avo(x,y)
$ix,v,t) = dlx,y) = a R (x,vy) 2 R, (5.25)

1+8<Cec<T~-1-6.,

Noting (5.15) and {5.16) and the fact that Vv(0,y,t) £ 0, we conclude from (5.23) that

-

vix,y,t) = vo(x,y) B
1t +85 < T~1V=-46 . (5.2¢)

wix,y,t)
Since wv(x,y,t) £ vg(x,y) is a solution of the wave equation with (cf. (5.18)})
vo(x,y) =0, {(x,y)es-{(x,y)I" < y<«}

it rust in fact be a solution of Laplace's equation thers. Then we compute

a;o 2 330 2 22 v0 a%v
[ G o)+ (5= )+ v ayd (5= oy + (xy2) ] axay
R 3x dy

= f div(vo(x,y)grad vo(x,y))dxdy
R

| § av

= | Vo (xsy)grad v (x,y)*vix,y)ds = f Vo (%.y) ——3 (x,y)dy . (5.27)
B 0

-

Combining (5.9) and (5.25) with the fact that Yo satisfies Laplace's equation we conclude

from(5.27) that

~ PN

3v0 2 avo 2
f [(3;— (x,y)] + (3;— (x,y)) ]dxdy =0

and this, together with (5.18), implies

;O(X,y) 0. (5.28)

Combining (5.26) and (5.28) we conclude that

V(x:y:t) =0
- - (x,y) @R, -® <t (™ (5.29)
wix,y,t) = v

the result for == ¢ ¢t < ®» being an immediate consequence of the result for

-27-
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1+68<Ctt<T~-1-86., Since this is true for every & > 0 and every s(t) ir (5.4),

(5.5), we conclude that a comparable result obtains for v, w in (4.11), (5.,2), (S5.3). It
follows (since w = constant is a zero state in H and in H) that (cf. (4.9) ff.)

|(vo,v1,w°,w1)lH = I(vo,v1,w0,w1)lH =0

and, from the discussion in Section 4, the approximate controllability result follows.
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6. SOME EXACT CONTROLLABILITY RESULTS IN THE CASE OF A CIRCULAR CYLINDER

We consider now the casze 1 = Rx (-®,®) with
2 2
R ={(x,y)|x" + y° < 1},
B = 3R = {(x.y)lx2 + yz =1} .

With introduction of the usual polar coordinates r,8, the equations (4.1), (4.2) now

tecome
azv 32v 1 v 1 32v
2 o2t it 2 2 (6.1
at r ror r” 38
2w 3% 1aw 1 3%
S22 Y 2.2 (6.2)
it ar r” 38

and the boundary conditions (4.3), (4.4) are transformed to

3v
by (1,8,t) au(d,t) , (6.3)
 (1,8,6) = Bute,e) . (6.4)
r
Writing
-
v(r,8,t) = X v (r,t)eike, v, =v , (6.5)
k -k k
kz—ﬂ
T ik
wir,8,t) = kz-o wk(r,t)e L (6.6)
uf{d,t) = z u (t)eike (6.7)
k=m0 k

we arrive at an infinite collection of control problems in the single space dimension, r:

2 2
3.:5 a % + 1 3:5 K v =0 - ¢k <w (6.8)
- - —_— = ’ ’ -
at2 ar2 r ar r2 k
2 2
37w 3w dw 2
k k 1 k k
2 " 3 traw T TEI%w T ke, (6.9)
3t ar r
-
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ka

T (1,t) = uuk(t), -~ < k< @ , (6.10)
3uk

3 (1,t) = Buk(t), -® ko, (6.11)

We will first treat the equation (4.1) with the boundary condition (4.3) which, as we

have gseen, reduces to the set of problems (6.8), (6.10), = < k < =, With

@ i @ 3v, (r,t)
ik8 _ k! ik 0 v
z(r,8,t) = kL z (r,tle’ = Z TS 3¢ (£.0,6)
we have the equivalent first order systems
3 o (r,t)y _ (O v (r t) v (r,t)
at (z (r, t)) ( Kl )(z (r t)) Ikl[z (r, t)) (6.12)

where L is the differential operator on the right hand side of (6.8). The boundary
Ikl

conditions (6.10) become . .

2, (1,£) = au (t), —= <k Cw= . (6.13)

The eigenvalues of the operator le' with the corresponding homogeneous boundary

condition

z(1,t) =0 (6.14)

are
0, 1iw|k| X L= 1,2,3,i.. ,

where ey, L 1s the t-th positive zero of the Bessel function J'k'(t) of order lkl.
’

The corresponding vector eigenfunctions are

(Qlklo(r) ¢'k|z(r) - (kK (=

RS ‘o2 =1,2,3,...
0 _lwlklll ¢'k'£(r) <13 H

where

- 1%} Kk (w 6.1
Olk"o(r) AIkI,Or k ’ (6.15)
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The normalization coefficients AlkI,O' Alkl g are chosen so that
[

1
| cts (rr1lar = L [1 rlé (o)1 %ar =+, 2=1,2,3 (6.16)
o Ix},0 2%’ 0 Ixl,2 2%’ rerTecce e .

Thus
- flkl *+ 1 -
AIkI.O x k<=, (6.17)

while, as may be seen from [5]), e.q.

w
- |k, 2
Alg = (6.18)

[ ]
LICIITINY

The state space in which we wish to work, for the present at least, is (cf. (2.18))
~ 1
H = {(:)lv en'(m, zetim)

with the inner product
v v -— —_—
((21), (22]) = f (Vv‘-sz + z,z,)dxdy
1 2 R
and assoclated norm. Since the ¢|k| 2 satisfy the homogeneous boundary condition (6.14)
’
one easily sees that

. RV
|( |k|60 )|~ = - x| oeikGA(¢|kl oeike)dxdy
H R [ r

kX ) . 2x
iko Ix},0 -ik8 Ix] + 1
+ / ¢ e —_——r e de +_._.__[ [k{d8

IR Ix!,0 ar x 0
= 2I1x{likl + 1), =<k ¢=», (6.19)

while

-3~
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¢|k| ) ] 2 2
! _=A [ 1e | “dxdy
| ( tlulk'pl‘lklll |H ‘k‘r'- R \k‘ll

F=runnaa— 2
+ £ et e o)L XY = 2 g £ 16y, gl dxdy = 20\ (6.20)

where

2
A - < = 1,2,3,00¢
el, 0 ™ Cpeg,e) e k<R =23,

0,0 ~
The state ( 0' ) has zero norm in H. Nevertheless we will not neglect this component.
If v, vV both satisfy the wave equation and (6.3), (4.13) on 3R with initial state
(4.5) for v we have (cf. (4.16))

~

e _e v LI T
((Cimy, (2 'T’))?l -al v, e) 3 (oy,t) dsde . (6.21)

z(*,*,T) z{*,*,T) LSR

It may be shown that this result is valid for all u for which the solution (in the
generalized sense) v 1lies in H and varies continuously with respect to t. This class
of controls u is discussed in {19]) and is known to include, e.g., u € C([O,Tl)H’lz(B)).

If we assume (:) given by the H- convergent series

vie,ot)y _ T 1k®
(z(.'.'t)) k{ Vi, 0l 0 g )t

e

- - b olk® 6 o1k8
+ Iki.t - Ixl,2
I 1 v v + v L (t)
K== g=1 k,L 1w ’ elke k,2 -t s eike
Ixl,27 11,2 Ikl, 271k,
and successively let
(e, 1x8 _ ik6
v(es,°,t) . O‘k"oe iwlkl,l(t T) ¢|k|,le
2(s,*,t) 0 *© iw $ ix@ '
z(*,°,t Ikl e®xl,2®
ix8
-iw (t-T) ¢ e
Ix|,2 Ixl,2 - ¢k C®
e ixé | , L= 1,2,3,... {6.22)

e PIE M N
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for T > 0 we arrive at the equations

3y o L
21kl + e, (0 = e [ [ ue,e) __1;149 (1) e Pagae
~e 0 o
- 2va 'k" () ] u, (tiae (6.23)
iw (T-t) 34 4
+ = ki, 2 x|, -ik8
My 0k, 2 T = o g g u(d,t)e —57= (e deae
3¢| T 4 (T-t)
xi,2 |k|,l
= _Tt (1
na sy (D { e w (t)de , (6.24)
T 2x ~iw (T-t) 3¢
- = ki, 2 Ix],e -1kx8
Alkl,lvk,l(T) a g g u(,t)e sr— (D e abde

30|k|'z o1 [T e-iwlkl'L(T-t)

= ma ar

uk(t)dt . (6.25)
Thus the Dirichlet boundary control problem for (6.8), (6.10) is reduced to a moment
problem (6.23), (6.24), (6.25) for which u (t) must be a solution. We proceed in much

the same way with the Neumann boundary control problem for (6.9), (6.11). We let

bt ® dw, (r,t)
_ 1k8 k! ik _ dw
glr,8,t) = L (xr e ) —3 e 3¢ (r,9,t)
k=~ K=t
and obtain, in place of (6.12),
3_ (wylr,t) Iyrw, (r,t)y _ vyl t)
(C (r, t)] ( 0)((:(r,t)) lkl(z (r, t)) . (6.26)

|k|

The boundary conditions are now

3w,

k
30 (1,£) = Buk(t), - <k ¢ @

The eigenvalues of Mlkl with the corresponding homogeneous boundary condition
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Iw
T {(t,£) = 0

ar
are, for k = 0,

9, *1“o,z' £ =1,2,3,¢.0

where Vo 1 is the £-th zero of the differentiated Bessel function, jé(r), of order
’

0, and, for k * 0,
tivlkl:l' 2 0= 1,2,3,e.4 ,

where is the R-th zero of Ji(t)- In the case k = 0 the eigenvalue 0 has double

Vi, 2

multiplicity. The special solutions taking the place of (6.22) in this case are

wie,o,t) ) Yoo (t = Ty,
~ = (6.27)
Tle,*,t) 0 Yoo

where is such that (cf. (6.16))

Yoo
1

2 1
g tVg, dr = 3= l.e. 9o, =

=l

In all of the other cases the vector eigenfunctions take the form

W‘khl(r)

' - <k <®, L =1,2,3,...
el t1kl,2

tiv (r)’’

where

-w < k <
L= 1,2,3,... .

= J ,
Vi, e = By, e et Yk, oF)

the normalization coefficients

v
Ll 2 (6.28)

2,172
TP

.

B =
Ikl, e

i (ulkl ¢ " k

.
AERERE)
e %t

WAL S a e

selected so that

R
2 1
g tlwlk"z(r)l dr = > -

AR

s
5
el

The corresponding special solutions of the homogeneous equation are

Y s
o
" e w,

’
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1
RN
N - - ik
S T I I At Vit e
X Cle,°,t) iv v o ik8 ‘
-.:‘-. lkllz |k|vl
S}
-iv (t-T) v o1k8
Tkl ., 2 1%l ,2
A e ) . (6.29)
v -iv v e1k6
o el 2¥1x1,e
.*I‘-'
e As in (6.20) it may be seen that
\
.‘\:' ‘, 2
N
o k], 2
~'::¢' | tiv I lv |~ = 2u|k| 1 ’ ulk' L = (Vlkl ‘)2 . i
S x| ,2 Iklll H ‘ ‘ ! |
L~ :
y i Let w satisfy the wave equation and (6.4) with w(x,y,0) =0, Z(x,y,0) =
?:?' %% (x,v,0) 20 4in R. We expand (:) in the form
A
AR v 0
- w(e,*,t) 00
LN = w,  (t) + (t)
:-:.\‘ (c(o'.'t)) 00 (0 ) coo (*00)
o - * l eike * eike
+ Ikl,2 - 1x|.,2
+ +
DR LS ik | ¥k, 2'®? )

k= =1 -
- APTIRAPI . AMIPA I

If w satisfies the wave equation and the homogeneous boundary condition (cf. (4.14))

-~

%% (x,y,t}) =0, (x,y)eB, t>0,

we find (cf. (4.16), (6.21)) that

TCIEIE TR TEITI J PO w
N ((C("'IT))' (c(."'T)))T{ B8 {) LaR u(x,y,t) 3‘; (x,y,t) dsdt . (6.30)
w"l

Pt

Employing (6.29), (6.3) successively for (g) we arrive at the equations, for

s
‘»
[

L]
)
l‘. “ I‘

o <k <w, L=1,213,...,

.
»
b

O
e .~ ‘s ~ \ '.l A‘l
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2,

(A

i

e

-~

- " Cw g Tm e e b
[ n ) V. Zal) -l X a8 Yo,

T 2 iv (T-t) )
* Ixl,2 ~ik8
2] Ty = 9, v
el ek, () < 8 g g u(@, ety e V)y, g De Pasar
T iv (T-t)
—— x},2
BV Y, et [ e et u (t)at ,
L [ 0
T 2 -iv (T-t)
2 Tory = - { Ixl, 2 -ik9
LI A (R L LT Vipp gD anat
T =iv (T-t)
—— k)., 2
= ~2'81‘)|kl'lv'k|,l(1) [ e l l u'k(t)dt .
! (]

w
We find also, taking (E) in the second form given in (6.27), that

T 2% T
Coo'™ = 8 { { u(d,€)9y,d0at = 2%g¥ { ugltlat .

Since this must be true for all T and g; woo(t) = Coo(t), we have also

T
Voo (T) = 2¥B¥y, £ (T - t)uy(t)de

- 2
Since u|k"‘ (vlki.l) . (6.31), (6,32) become

T iv (T-t)
Vil e + T x|,
-{E{L— Vi, 2 T) = ¥ (D) { e u, (e)at

T {v (T~t)

Iki,2
- t
Bt a7l , 2k, 0 g e u,(e)d

T =-iv (T~t)
ki,

v
Ikl 2 fes) e uk(t)dc .

B ™ T P, e, YL £

Taking account of the fact that

E:lELLi (1) =g A EELELL& (w )
Ir |k|ll lklo'- r |k|,l

(6.24) and (6.25) yield
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(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36
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w 37 T iw (T-t)
k|, + vl,t ki, 2
—— T = A s v
"a v~'1( ) Ikl.e 3¢ (wlkl,l) g e u (t)dt
w 3J T -~iw {T-t)
k|, t - 1x{,2 i, 2
e I I P CY g e u (e)ae .
On the other hand
32151;2 (1) = & Ix}
dr |x],0
3o (6.23) gives
Lef + 1 (T) = A IT (t)at
va k0 Ixl,0 ¢ % :
Using the formula (6.18) and (6.28) for A and B we have
Ikl,2 ixl,t
v . _ .
lkl,2 + V1k1,2 T kg, e
Tei—' wk i(T) = 2 1/2 e “k(t)dt
L[4 -
£ Wypg = KD 0
“Ixle - 3 ki, T Vx0T
'—i—ei— \vlk l(T) = 2 1/2 uk(t)dt
' x -k ]
(u|k|'£ )
w T iw (T-t)
el %y w1 MKlut u, (£)dt
na k,2 /70 k
© T =-iw (T~-t)
kit vo M = g Ikle v, (B)at
na . * 0
The equations (6.39) become, in view of (6.17),
- —— — T
22 kil + U, gy o L20K] g w (t)ae .
Ta k,0 - 0

This is valid, but meaningless, for k = 0. It is easy to see that in the case
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(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

we
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should use

T
Voo!T) = [ u (t)rae . (6.45)

1

/n a 0

k

The equations (6.33) and (6.34) are left as they appear. We note that all of the

coefficients
Vikl,2 R
2 172 ‘
/x (Mppy, e = k) Y~ -
.

, k # 0, 2x8 (6.45)

are bounded away from zero, uniformly with respect to k.

It is also possible to show, using the work {10}, [11] of X. D. Graham, that the
numbers

O Vel Bkt e Vikl2e “t, 20 VLt Ykl Lyttte

are separated by a gap at least equal to %/2 again uniformly with respect to k.
Applying the result [14) of A. E. Ingham along with the work ~f Duffin and Schaeffer (7],
much as in [(12]), [2], [3], we conclude the existence of functions u(t) in LZIO,T), for
any fixed T > 4, solving the above moment problemg, -» < k < =, Moreover, the result of

Ingham implies as explained in ([12], [26], that for each k

T
-2.2 2 22
e N < g lu, (e)1%ae < N

where

2 2
N 2 kel + ‘)lvk’o(T)l

-«
+ 2 - 2
+ 1A fv. (01 ¢ T 2 lv, " (D)
ooy ke VRt P LI A
- -
+ 2 - 2
+ (
* lz, P AW lz‘ ETIIA L

k= £1,82,... . Por k = 0 we must add {COO(T)lz + |woo(T)|2- Since

- a

T 2% 2 - T 2
[ ] tae,er®aeae = § [t te)ftae (6.46)

km-w 0

~I
Cd
» -" -‘l .l

—-{-
{
i » I
* -
.
o
o

!
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we see that the above moment problems, equivalent to the control problem, can be solved

with (6.46) finite, provided that

L
P e,
k==

wnich is the same as saying that the norm of the final state in H sgshould be finite. We

have, then, the exact controllability result that any H state may be controlled to any

other H gtate during a time interval of length T > 4 with the control configuration we

Y RRRRIOUN

have described here. As discussed in connection with the wave equation in [(FF], [GG], one

cannot be sure that the state of the system remains in H for all t e [0,T]. However, in

the present case of the Maxwell equations one can show that these states do lie in

R = H“d(l).

d
4
:
)
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7. CONCLUDING REMARKS

The approximate controllability results of Section 5 would appear to be extendable to
domains other than rectangular ones but the precise method of extension remains to be
worked out. We will indicate some aspects of this problem which are clear from our current
work.

First of all, the result of Section S is almost trivially extended to the case where
control is exercised only on a subset {(w,y)|{0 < a<y <b< %}, b>a, of

{(n,y)I0 € y < ®}. The only change is that the interval 1 + 8 ¢ t < T - 1 - § appearing
in (5.14) and subsequently must be modified to d4 + § < t € T - d - § where
d= inf { sup {{tx - 02+ (n- y)z]‘/Z}} .

ady<b O<E<w
o<n<x

It é(w,y,t) = g% (®,y.t) 0 for § < t<T-8, ac<y<b, the Holmgren theorem will
still apply to show that ¢(x,y,t) 20, (x,y) €R, d+ 8 <t <<T~4d-8. After that the
remainder of the proof is the same: the same eigenfunctions and frequencies must be dealt
with, the functions sin jy, cos jy are still independent on a < y < b if b > a and
the conditions

;o(x,y) =0, (x,y)eB-{{r,ylla <y < b}
avo

-;— (v,y) =0, ady<b,

still show vo(x.y) 20 in R.
The first limitation of the method which we have used in Section S5 lies in its
dependence on the construction of ¢(x,y,t) as a linear combination of partial derivatives

- -

of Vv and W. It is necessary to have a solution of the wave equation to which Holmgren's

theorem may be applied. This part of the proof can still be used for non-rectangular

domains as long as a portion of the boundary on which control is applied is a straight line
segment. Assuming the segment parallel to the y-axis, one can construct ¢ by the formula
(5.8) again and show that ¢ and 2 both vanish on the straight line segment in

Ix
question, allowing subsequent application of the Holmgren theorem to show ¢(x,y,t) 3 0

-40-
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for (x,y) @ R and t in some interval d +8 € £t < T -4d ~ 4, with d depending on the
geometry of R. But then we are faced with a second limitation.
The second limitation of the method which we have used lies in its reliance on the
;
specific form of the eigenfunctions and frequencies to pass from ¢(x,y,t) = 0 to the 1
conclusion that both vVv{(x,y,t) and w(x,y,t) are likewise identically zero. It needs to )
]
be emphasized that no local analysis will suffice here. In the one dimensional case (see J
our remarks at the end of Section 3) if the control problem is stated for boundary
conditions g
v
V(o,t) = 0, -a—t (1,t) = qu(t) (7.1)
3 (0,e) =0, 2 (1,6) = Bulr) (7.2) :
ax ' 'oax ! 4
the ;: v constructed as in Section 4 will satisfy the wave equation and :
v(0,t) = 0O, 3t (1,t) =0, (7.3)
v aw
= (o,t) =0, (1,e)=0, (7.4)
Ix Ix [,
}
% 3w . . 1
Ll (t,e) + 8 ETY (1,£) = ¢(1,v) i} {7.5) i
]
Here if we take w to be a non-zero solution of the wave equation satisfying (7.4) and 1
1
take
~ 3w
vix,t) = -% 3¢ (E.t)aE
: t
. we clearly have v(0,t) = 0,
™~
5 1 .2~
2 3v 3
(] a_: (1,t) = g! 2= (g,v)48
4 0 23t i
l."
"
4 1 .2~ ~ ~
o’ -8 Aw -8 (v - v -
~ s/ = v = (55 0,0 5 (1he)) =0,
”q 0 3¢
3]
[
-41-
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so that Vv satisfies the wave equation and, clearly, (7.5) is also satisfied. Thus the
wave equation with (7.1), (7.2) is not approximately controllable: ¢é(x,t) =
a %% (x,t) + 8 %g {x,t) = 0 but this does not imply that V or w are identically equal
to zero. The additional condition which makes this work in (3.7) ff. is the fact that one
can show there that ~ ~
0,0 +8 300 =0,
It seems likely that the question of whether or not ¢ = 0 implies that both ; and ;.
equivalently v and =. are both zero must eventually reduce to a boundary value problem
of an as yet unidentified type.
At the present writing there is only one, rather curious, result which we can offer

which yields approximate controllability for a domain R of rather general shape. We
suppose that the “control boundary” B, B = 3R includes two nonparallel line segments,

) 3 and lz, with unit exterior normals v, and vy Proceeding ags before we can show,

1

applying the Holmgren theorem together with

1 a8

=0 on £y, 2L,

?
3%‘ =0, i=1,2 on 21, lz. respectively,
i

v ow
a 53: + 8 % - 0, £t=1,2 on l‘. 12 regpectively,

that both
v dw (7.6)
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+ B =, {7.7)

must vanish identically in R for d+ 8 < £ < T -4 -6, &6 >0 arbitrary, d> 0
depending on the geometry of R and B, the location of 11 and 12 within B, etc.

But then both ¢1 and $, must vanish on £, (say) for these values of t. Subtracting

(7.6) from (7.7) we see that

av v
G(ﬁ: 'E)"O on 21X[d*6,'l‘-d-6]

This shows, since 11 and 12 are not parallel, that a nontangential derivative of Vv

1

vanishes on 2, x (4 + §, T-4d ~-68). Combining this with %% =0 on &L, and applying

4

the Holmgren theorem to Vv alone, much as in (5], [13], we are able to conclude V 0,

KA

provided T is appropriately large. Then one easily has the same result for w and

e’
s ¢ 0o o F
a's%a%a

approximate controllability follows.

This result gives approximate controllability for R equal to the interior of any
closed polyhedron in R?2 with control on at least two sides.

Further inspection of this argqument shows that only l2 needs to be assumed to be a
line segment. That is needed in order to identify ¢2 as a solution of the wave
equation. We may then take l, to be any smooth portion of By which is never parallel
to 11 and achieve the same result.

Finally, let us indicate that we are very much aware of the limitations, from the

point of view of actual implementation, of the control configuration discussed in this

paper. In principle, at least, the boundary conditions (1.7), (1.8), along with the
- : further "single layer™ condition discussed in connection with Figure 3.1, could be achieved

° with conducting bars attached to terminals as shown in Figure 3.




— e - aw e s

Figure 3. Conducting Bar and Busses

The perfectly conducting busses perpendicular to the boundary of & ensure that the normal
component of E. Bv, is zero just outside I, provided that no net change is allowed to
accumulate at the boundary of I, 4i.e., in the conducting bar. Thus the potentials at

C and D must be regulated so that the potential difference C - D ensures the correct
controlling current through the surface bar B while C + D is set so that there is no
accumulation of charge at the bounding surface.

We have not considered any effects of propagation delays in the controlling circuits -
i.e., we have not assumed that these are distributed parameter systems. This assumption,
and evident limitations on the speed with which prescribed currents can be computed and
established in the controlling circuits together with sensing limitations, place admittedly
severe limitations on what can be done “"open loop”™. It is likely that the eventual
significance of our results will be most evident in connection with closed loop behavior
wherein time varying magnetic fields & near the boundary of & induce cuirents in the

bars B which, being resistive, will then act as energy dissipators. We hope to discuss

this topic in later work.
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Another control configuration may be obtained by supposing the boundary of Q to be a
perfectly conducting sheet of material to which electromagnets are attached in a dense

array as shown in Figure 4.

Figure 4. Electromagnet Array

If J denotes the current through the windings of the electromagnets, then we shall have
E =0

and
Hv = aJ

where a 1is dependent on the electromagnet's configuration. The theory in this case will

take much the same form as the one discussed in this paper.
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;: "Regular™ Nonharmonic Foirier Series™
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- Abstract

R

{: We present here a class of realizations {¥p} of the dual space ¢' for
(. the Paley-Wiener (Hilbert) space ¢ of entire functions. The elements of each
“

i space Tp are meromorphic functions with poles at the zeros, zx, k € K, of
‘

': a certain "cardinal function™ p. The relationships between ¢ and Yp are

explored and applications are made to the study of nonharmonic Fourier series

5j whose terms are complex exponentials ezkt.
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N 1. Introduction and Statement of Principal Results.

.;fﬁ It is well known that certain families of entire functions may be given a
o,

- Hilbert space structure. (See, in particular, the extensive work [A] of

de Branges in this connection.) The most familiar of these spaces 1is the

(AR} ;e
PREEE A

XR” OO

so—called "Paley-Wiener space”, which we here designate as ¢. It consists of
Y entise functions ¢(z) = ¢(&+in) with the following properties: For each
\::*.:
o e
N
W (1) there exists a positive number, My, such that
W [6Cx) | < u¢e"| 5', z = £+in € L; (1.1)
N
o (11) there exists a positive number, Ny» such that for every real ¢
L 2% | &
h J:I $(E+in) | 2dn < Nge | €] . (1.2)
t;] An inner product and norm for this space are described in [A] and that norm is
.i: equivalent to the norms which we will introduce at the beginning of Section 2.
]
N One of the purposes of this article 1is to introduce a space (actually, a
;$5 class of spaces), ¥, of analytic functions ¢ = P(z) having singularities
\I
5: confined to a vertical strip in the complex plane L , and serving as a

a
aYeVa"a"

{

natural representation of ¢', the dual space to ¢. The main interest centers

;Ei; on Yy € Y which are meromorphic with poles confined to such a strip. The rela-
Eté tionship between ¢ and ¥ 1is somewhat similar to the duality relatioanship
3%y between paired Hg spaces. If we define the left and right Hardy spaces Gi
.§S§ and Hy; to consist of functions g(z), h(z), analytic in Re(z) € a,

;;3 Re(z) > a, respectively, bounded in sets Re(z) < a-e, Re(z) > a-€, respec-

¢

L

tively, and satisfying uniform L2 bounds

4 ‘u.
B

4.
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I7 | ete+in | Zan < B, £<a,

o
STincerny | Zan <c, € a,
jb:: then (see, e.g., [B]) g and h have L2 traces on the line Re(z) = £ = a
fiJQ and the duality relationship
A <g,h> = | g(atinmh(a+in)dn
§§'m may be used to define all linear functionals on Gi or Hyg, each of these
.;ii spaces being a natural representation of the dual space of the other. We will
::é; have more to say about this imn Section 3.
] Just as in the case of the Paley-Wiener space and the other, related, spa-
E: ces described by de Branges, the spaces ¥ which we introduce as dual spaces to
7353 ¢ are intimately connected with certain entire functions p(z) which "just
ﬁkf fail" to lie in @& p does not belong to ¢ but if 2z i8 one of the zeros of
:aé p, p(z)/(z-z) does belong to ®. We call such a function a cardinal function.
_%& The precise definition of a cardinal function operative in this paper is the
:;J following: an entire function of order l and type w, p(z), 1is a (regular)
.;?% cardinal function if there exist M}, M~, a, all positive, such that, for all
A z = E+n,
-
o | oceim | < ute " &l (1.3)
S
: |p(;+1n)|>u'e"'5‘, | €] > . (1.4)
o~ If p 18 a cardinal function, the space of meromorphic functions
R IR ORROVICR R
323 1s shown to be a natural representation of the dual space ¢'. With Z, being
‘;: the set of zeros of p, one sees that the meromorphic functions ¢ € ¥, have
?§ partial fraction decompositions analogous to
-
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(with suitable modifications in the case of multiple zeros) which are rzlated,

in much the same manner as described by Schwartz in [C], to exponential bases
z t
k

E ={e |z ez}

p p
We are able in this way, to describe certain Riesz

for the space Lz[—n,w].
bases and "uniform decompositions” of Lz[-n,n], uging properties of p
somewhat different from the assumptions on the growth and spacing of its zeros

appearing in the classical work of Paley and Wiener [D], Levinson [E] and

Schwartz [C], or in more recent treatments, such as Duffin and Schaeffer [F]

and Young [G].
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2. ¢ and Y as Spaces of Fourier and Laplace Transforms.

The linear vector space, ¢, of entire functions satisfying (1.1) and
(1.2) coincides, as is well known, with the set of Fouriler transforms
L
$(z) = | eztf(t)dt = (FE)(z) (2.1)
— " I

corresponding to functions f € L2[—w,n]. The inverse relationship 1is

1 SHA g |
£(e) = 1.Lmgy J e ““e(z)dz = (F ¢)(t), (2.2)
E-1A
the integration taking place over the straight line segment jolning the two

integration limits. The Plancherel formula

2 1
IfILz[_"’“] 7n (FICEDY Lz(_m’m)
shows that (2.1) and (2.2) are each positive scalar multiples of an isometry on
Lz(—w,w), the notation ¢(i+) 1indicating the restriction of ¢ to the imagi-
nary axis. From

" 1
serin) = | VR g(eyar |

it is easy to see that for each real §

] NPORY iz(_@,m) < J7| o(g+in) | Zan (2.3)

€
' l 19(1+)1 LZ( —, )

from which it follows that each of the morms 1 |, defined by
191 2 = J7C| aCortn) | 2 +] a(-ptin) | Zydn
P ~o

z| = 2

2
- JPJ o) ] °] az| = 141 L2(r )

I, being the contour consisting of Re z = p, oriented upwards, and

o

Re z = -p, oriented downwards, is equivalent to 14(1+)1 « Much of our

LZ(‘“)“)

e L R M e N N e e e e e e T e T DT T e N
AT I , ) / e
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work depends upon being able to vary at will the particular value of p being
using for 1, secure in the knowledge that the resultant topology remains
invariant.

Let Y denote a certain family of functions ¢(z) analytic 1n| Re(z)l > a
for some a > 0 which may depend on y. With I, as already defined, p > a,
we specify ¥ precisely as consisting of such functions ¢ for which the iden-

tity

W) = oo er“’gfg az, |re(z)| > o, (2.4)

is satisfied, and, also for every p > f > a

Jpl ¥z2) | 2] dz | < Ng s (2.5)
where Np 18 a positive numbe: depending on f. It is quite straightforward to
see that a sufficient condition for a function ¢, satisfying the second con-
dition, (2.5), to also satisfy the first condition, (2.4), 1is thatl w(z)l
should be bounded in | Re(z)| > p for every p > a and, again for every

p > a,

lim ] _!P(_Z_)_d_g_= 1im l ME_M_’-’,()

r-beocrpp-z r + o -p-z ’
s

Cr,-p
»
where Cr,p: Cr,-p are, respectively, the right anid left hand semicircles of

radius r centered at the points z = p, 2z = —-p, respectively.

Proposition 1l.1. Corresponding to each ¢ (and associated a) in ¥ there is

a unique function g € sz (-»,®), p > a, where

Li(-o’o) = {ge¢ Lioc(—~,~)| 1: e‘2°| e | et | 23 < =},  (2.6)

and ¢ = g, the “two-sided " Laplace transform of g, 1in the sense that

......
A, W e,
DR P
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W(z) = (£g)(z) = J; e fe(t)dt, Re(z) > a, (2.7)
0 2t
= =/ e ""g(t)dt, Re(z) £ -a. (2.8)

Moreover, for each g € sz (-=,=), ¥(z) = (£8)(z) € V.

Proof. This is quite standard, so we will be brief. Symmetry allows us to

consider only the t > 0 part of (2.6) and the first identity (2.7). Given

p € ¥ we define g € Hg[O,O) by use of the Laplace inversion formula on the
line Re(z) = p, p > a, and application of the Plancherel Theorem. On the
other hand, 1f g ¢ Lﬁ[o,w) and we define (z) = (£g)(z) by (2.7) for

Re(z) > a, application of the Plancherel Theorem again establishes (2.5), inso-
far as the portion Fg = {zl Re(z) = p} 1is concerned, for p > a. For

p > 8 > a, application of (2.7) readily shows that

1 -ft
¥(z) | € =———x e "g(v)l , Re(z) > p. (2.9)
' I Re(z)-p LZ [0, %)

Let Tp , denote the positively oriented D-shaped contour consisting of Cr,p>»
as defined earlier, and {zl Re(z) = p,l Im(z)l < r}. If Re(w) > p, then

for sufficiently large r

For z = p + reie, -n/2 € 0 < /2,

1 1 1
Re(z) - B  Re(z) - p+ (pB) T cos 8 + (p-p)

is bounded and tends uniformly to zero as r+« each sector

-%/2 4+ 8§ <8 <w/2 -8, §>0. Using (+) together with the fact that
-1 -1
| "z| = 6(r °) uniformly on Cr,p 38 T -l z-p’ tends to =, the integral

over Cy o, 18 seen to vanish as r*= and (2.4) follows from (2.10), the
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convergence of the integral in (2.4) again guaranteed by the Plancherel Theoren.
The proof for Re(w) < -a 13 almost word for word the same so we will regard
the proposition as proved.

For g € Lg[o,n), p > a, the usual Laplace inversion formula shows that

g(t) = 1l.i.m. eZCW(z)dz.
A+w

For t < 0 a standard argument shows that the integral vanishes. For

1 !p+iA
2ni p-iA

g € L2(—~,0] we have, for -p < -a,

p+1A
-1A
and the integral vanishes for t > 0. Thus, letting

1

- t
g(t) = l.i.m. ITh J e ¥(z)dz.
Ase o

roa= T, {z| |m(z)] < A} (2.11)

we may write

eth(z)dz. (2.12)

L
g(t) = l.i.m. 271 Jr

Ave ,

Let p be a cardinal function as defined in Section 1. We define Yp to
be the subspace of Y consisting of functions ¢ such that
$(z) = p(z)¥(z) (2.13)

i1s an entire function and the identity

1
¥ =g Ir ekl

is valid for all z 1in the open strip interior to Tp, p > a as defined for
p 1ia (1.4).
The results which we present next concern the structure of ?p as it rela-

tes to ¢ and the cardinal function p.

Theorem 2.2. Let ¢ € &, let p be a cardinal function, and let a be as

specified in (1.4). Define

........................
.........

................................
.............
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-1
(P "9)(z) = ¢(z)/p(2) = ¥(z). (2.15)
Then ¢ € YPCIY and for every p > a there is a positive Mg such that

2 2 2
Jo | w@ || dz]| < nter” . (2.16)
o}
Proof. Let p > a and let I Re(z)' > p. Looking at Re(z) > p first, we

have

1 v
Wz) = 5ng ]rr z-('lc;) dz,

vhere rr,p is defined as in the proof of Proposition l.1. Let 4(z) = ( £f)(z)

as In (2.1). Then with z = E+in

2 ¥ o2 2
I ¢(z)| < -j-" e Et dt Ifl LZ[_“’"]
1 2n§ -2n§ 2
= —2-€ (e - e ) 1f1 LZ[_“’"]

so that

oy | < &, "€l /4] 65172,
with M, depending only on ¢, not =z. Using this with property (1.4) of »p

and applying the Jordan lemma we see that

lim JC fé%l dg =0

Y > r’p

so that

1 ¥
¥(z) = 507 JI-: c-g) dg .

For Re(z) > p > a the corresponding integral over Tp, the left hand portion

of T,, orlented downward, vanishes and thus

¥ g,

— (2.17)

1
¥(z) * 51 fp
[

A similar argument shows that (2.17) also applies for Re(z) ¢ -p < -a. Hence

condition (2.4) for ¢ to be a member of ¥ 1s satisfied. Condition (2.5)

............
.............

......
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follows immediately from (1.2) and (1.4). Since p(2)y(z) = ¢(2) 1is entire,
|
there remains only the proof of (2.14) to show that ¢ ¢ ¥p. Define Ry 4 to 1
|
\
be the positively oriented rectangle with corners #*p*iA. For =z interior to |

Rp A we clearly have

#(z) = 5%; Jx dg . (2.18)
p

From the bound (1.1) we have

| e"p
(%) —ﬁL“——- = r+iA -p < r <
L~z A-Im(z) °? ¢ ’ P P

and a similar bound holds for ¢ = r-iA. Hence, letting A+=, (2.18) Becomes
1
o) =57 Jp Eac, (2.19)
[

which corresponds to (2.14). We conclude ¢ ¢ Yp and the proof is complete.
The next theorem is a complementary result to Theorem 2.2. 1Its proof is

only slightly more difficult.

Theorem 2.3. Let ¢ € Yp and let

—

$(z) = p(2)¥(z) = (Pyp)(z). (2.20)
Then ¢ € ¢.

Proof. Let a be as specified for ¢ preceding (2.4). For I Re(z)l >

p>p>a, (2.4) and (2.5) combine, using the Schwartz inequality, to show

that for some Ba >0

| v(2) | < By
Since this 1is true for every § > a, wusing (2.20) with property (1.3) of p we

have

URIKS . \'.\- \‘.'-',\' ..-.$1._-.\-..'-.\- \* ‘. -.,_.‘,..'_ e e e, . N . - .:- LR G TR B S n <..':-A RS

..........
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(2.21)

a specified for p as in (1.4). Then using (2.5) with property (1.3) of p

we have

2
]FS' #(2) | 7| dz | < ny0

22" 55 ps>a.

(2.22)

The inequalities (2.21) and (2.22) establish (1.1) and (1.2) for | Re(z)‘

'I E‘ > 8 > a. There remains the question of the behavior of ¢(z) inside a

strip I Re(z)l <6, 06> P 1in order to complete the proof.

Let the right and left halves of Tpy

+ -

regspectively, be denoted by Ts, Tp,
+0z) = L1

$7(z) 2ni JF;

¥ =t rs
(o]
Since ¢ € Lz(rp');, we have

$7(z) = [Te *Tg(t)de,

#*(2) = [0 e neyae, J° 221l [neey | 2 ae ¢ -,

0
and
®, 2
J_ | ¢an)| “an =
Similarly
and

respectively. Define

$2 a4z, re(a) <7,

%é%l dz,  Re(z) < -p .

J7e2PE | g(o) | 2ar < =,
0

2”6“' g(t) | 24t ¢ = .

l:l #tany | 2 an = 2n igl h(e) | 2 at ¢ =.

Condition (2.4) for ¢ to be a member of Yp implies that

#(in) = ¢H(4in) + ¢~(4in), —= (< =,

oriented upwards and downwards

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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From (2.26) and (2.28) we conclude that there is a function f e L2(~w,»)

such that

o(in) = Loium. J® e "4 (1n)dn. (2.30)
Avo A

and
A
J

1 -
£(t) = 37 1l.i.m. N 1nt¢(in)dn .

. A+»oo
From the identity (2.29) and (2.23), (2.24) we conclude easily (since $ €
Lzrp) that | ¢(z)| is uniformly bounded in the closed strip |Re(z)| = |E]|< 6.
Let C, be the closed contour, positively oriented, consisting of the imaginary

axis from -1{A to 1A and the right half of the clrcle ' zl = A. Define

+ _ 1 -zt ¢(2z)
WO =gy o T d

Letting A-+», using the bounds (2.21) and (2.22) for ¢ and the Jordan lemma,

we counclude

1 -int ¢(in)
W) =gl o

is identically equal to zero for t > w. But the relationship of the Laplace

transform to convolution shows that

w(t) = ];e_(t—s)f(s)ds

and hence that
0 = w'(t) = w(t) = £f(t) a.e., t >

Thus we conclude that f(t) =0 a.e., t > n. A similar argument shows

f(t) = 0 a.e., t < -nm and we have, ferom (2.30) and the identity theorem,

Jn ezt

$(z) = f(t)de, f e LZ[—n,n],

valid for all complex z. Hence ¢ € & and the theorem 1s proved. For ¢ € ¥

we define, for p > a (cf. (2.3)),

LAt i gl ard 0¢ Al gt g T Il Sl Al Al mal ¢ gl Angh *Mib e e R DAL S ShU Syig S Jute grail 0 -d g Sa i g St At M Ay e g e
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.‘ 2 2 .

- Wt = e | Tz (2.31)
- p

o Then it is clear that the map P defined by (2.20) maps ¥, onto ¢. Its

inverse on ¢, Pl 1ig defined by (2.15). It is clear that both P and P-1l

are bounded with respect to I¢ly; in & and IYl, in ¥p. Since ¢ admits

SN

;t a Hilbert space structure, it follows that ¥, does as well.

.

{ One of the most important results of this paper has to do with the rela-

~‘: tionship between 1 i, on ‘i'p and another norm on the same space, which we

:'.': refer to as 1§ 1g. The definition of I 1j depends on the following result.

e

-i:::j Theorem 2.4. Let ¢ € &, v ¢ ¥, and let f € L[—w,n], g e L (—=,»),

- = ==

_".::j 8> a, be such that ¢ =3Ff, ¢ =fg (cf. (2.1), (2.7), (2.8)). Then with

.

O =i fL @) ¥z

{ : 2ni ‘T >

0y

_\‘: <¢,¥> 1is independent of p for p > § > a and we have

:‘ - - -

. <o, 9> = |7 £(e)g(t)de. (2.33)

v Proof The formal argument is very simple:

5 o0 = 5o | e(2)¥(2)dz = =i [ [Te®ti(t)dey(z)dz

™ -~ ’ 2xi I‘p 2xi I‘p L

b

= = T E(t) =i | eZty(z)dz dt = |7 f£(t)g(t)de, (2.34)

N ~n 2ni I‘p <

s

AN the last identity following from (2.12). To make this argument rigerous one may

~

b define (cf. (2.11))

N 8, (t) =37 Jp et W)z

7'2 p,A

- and one immediately has

i n 1

x> I3 f()g, (e)dt = 5o [ 6(2)¥(2)dz- :

o' D’A <

W {

: ]

3N 1

1

i |

< 1
-'... ~1~ .l -.‘
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) Since it is well known that g, converges to g in the L2 norm on [—1,1:]
\\: and $(z)Y(z) € Ll( I‘p), the desired identity follows immediately. Since the
‘.4 right hand side of (2.33) is independent of p, the same is true of the right
_-:: hand side of (2.32), which is well defined for all p > a, a as defined for
,:_:‘- ¥ preceding (2.4). We define a semi-norm on ¥ by

D, e

oo | |
s iI¥Y . = sup <e,¥>

7 et TIN ’

o $#0

R where

2 « 2

- ”"o:jm"b(i")l ldn'

-‘_f.'-:f is equivalent to any of the norms l I p on $, p > 0. Since the Plancherel
!..-i.

'.:_'.:: Theorem gives

-.\ 1

e 191 = Il N = /2 Ifl
{ ¢ 0 = ¢ L2[-n,n] 2w 1t Lz[-'n,n]

-:"_' and (2.33) obtains, we see that

";::" W
L2 1 1, £(e)s(t)de

- Iy, = sup

! ¢ V2% feLz[—n,n] £l Lz[—n,n]

. 1£140

I

j:-'..'. = Igl (2'35)
o /o LZ[‘n,n]

YOO

\ Thus 1dylyg =0 1f g(t) =0 a.e. in [-w,w]. Also, since the Plancherel
R Theorem gives

R 2 = 20t 2 0 2ot 2

wr” = 2x( e P [ g(e) | Car + [0 T g(r) | Tan)

et 0 —®

< it is clear that

o

e 2 1 n 2 2np 2

% % - < . .3
3 Wity =5 I | se) | © ae < % wen) (2.36)
}f:' A principal result of the next section will be to show that, restricted to Yo,
o

\:.‘- I 1% 18 a norm and an inequality in the reverse direction of (2.36) may be
\ ‘i\.

S
::;, obtained. We make a start in this direction with
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Theorem 2.5. If ¢ € ?p then

|‘p‘ ¢= 0 == ‘4’(2) = 0.

Then 1 lg is a norm on Tp.

Proof. If | w' $ =0 then for p > a.

jr 8(z)6(z)dz = 0, v ¢ ¢. (2.37)
p

Since Theorem 1.3 shows that for some ¢ € &

¥(z) = ¢(z)/p(z), (2.38)
(2.37) becomes
8(z) -
er (o) $(z)dz =0, 6 e 0. (2.39)

Theorem 2.3 also shows that as 6(z) runs through ¢, 8(z)/p(z) covers all of
P
Let C be a closed contour in the complex plane not meeting any zero of

p(z). Then with q(z) an arbitrary polynomial in z,

_ 1 1 q(z)
Ye(2) = 7a7 ]C z-¢ p(Zg) 4

defined for 2z exterfor to C, 1is a rational functfion of 2z which belongs to

G

Yp and consequently has the form 8(z)/p(z) as in (2.39). For another con-
tour C, Just outside C and enclosing exactly the same zeros of p(z),

(2.39) 1is readily seen to imply

0 = Jg H2IV(2)dz = [ 77 J = K 4 @

]c pC2) Zal g z¢ 97 46 é q(%) %?ET dg

Since this is true for every such C and every polynomial q we coanclude that

¢$(z)/p(z) 1s entire. But since ¢(z)/p(z) 1lles in ¥ C¥, (2.4) shows that

p
for p > a
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) Lo Loe@)
o p(z) 271 ‘T 2-¢ p(Z) ‘
., P
f.
-.::f The fact that ¢(z)/p(z) then shows that ¢(z)/p(z) = 0 for =z outside the
o
closed strip bounded by T, and thus, by the identity theorem,
e Wz) = ¢(2)/p(z) = 0,
\ proving the theorem.
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3. The Internal and External Spaces.

As previously, let Pp denote the contour consisting of the two lines
Re(A) = p, Re(x) = -p, positively oriented, and let the two halves of rp be

denoted rp, Fp. The following theorem is well known ([H],[I]).

Theorem 3.1. Let hy = hy(p+io) € LZ(PD). Then there are uniquely defined

functions hy(z), hy(z) defined and analytic in Re(z) > p, Re(z) < p, and

lying in the Hardy spaces B2 {Re(z) > p}, Hz{Re(z) < p}, respectively, with

boundary values in Lz(Pp), such that

+ -
h+(p+1o) = h+(p+10) + h+(p+io).

Moreover

2 + .2 -2
|h+| Lz(l"' ) = |h+| r+ + Ih, 1 r+ (3.1)
P P p
While we do not offer a formal proof, it may not hurt to remind the reader

that

h, (g)dg
+ 1 +
h (z) = 57 JP: 7 Re(z) > o, (3.2)

sy = L h (£)dg
R (2) = 509 11-: T Re(2) <, (3.3)
the orientation of P; being upward in both cases. Moreover, there 13 a unique

function g; satisfying

Lo

such that hy(z) = (Fg)(-z), Re(z) = p, H{i.e.,

e“z"t] g,(t) | 2 3t < .

h+(p1+0) = 1.{.m. jA e-iate-pt

t)dt .
ey g,.(t)

A e—(p+1o)t

= l.i.m. | g (t)de.

A»w -A
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+ -
while hy(z), -hy(z) are the right and leftr Laplace transforms of g4
+ -
hi(z) = L.im. |* &% g, (t)dt, Re(z) > o
Ao 0
h(z) = L. [0 &% g (£)de, Re(z) <o .
A +
Ado -
In the same way, 1if h. = h_(~p+io) € LZ(rp) we may decompose h. as
h_(-p+ia) = h' (-p+la) + h_ (-p+iq)
where ht, hZ 1lie in the Hardy spaces HZ2{Re(z) > p}, H2{Re(z) > -p}, respec-
tively, and
+ 1 h_(z)
h(z) = 5=+ [.- dz, Re(z) > -p (3.4)
- 271 rp -z ’ ’
_ ) h ()
h_(z) = m jr; 2T dc, Re(z) < =P, (3.5)
2 +.2 -2
#5200y = I+ BRI . (3.6)
P P
Now let h ¢ Lz(Fp) and let hy, h- be its restrictions to F;, Ip,
respectively. Define
~ + -
h(z) = h_(z) + b (2), |Re(z)| < o, (3.7
and we have, from (3.3) and (3.4),
Jov ~ 1 h(z) 8
o M2 =g o= 3-8
X p
A
::\:: ~
Zaly

We will refer to h as the "internal part of h relative to Tp". (If h 1s
defined originally on a set which includes I, for various values of p 1t is

necesgssary to refer to the particular rp in question. 1If T is understood,

p
we will simply refer to h as the "internal”™ part of h.) We will write (3.8)
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R -
and designate
~2 ~ 2 ~ 2
HO(r)) = {Th|h e L(T )= TLY(T)))
as the "internal Hardy space” (relative to Fp). We define
- + +
h(z) = h (z) - h_(2), Re(z) >,
h(z) = h_(z) - b, (z), Re(z) < p,

and we have, for | Re(z)| >0p

i bt et dionbionhe 0N S ot nebtbn B B ke Do B 8 A Bk B e vt .gk-,;.;'l

h(z) = zor I, M) g, (3.9)

as may be readily verified. We write (3.9) as

h = Th
and refer to h as the external part of h (relative to Pp). The space
- A 2 -~
R ) = (M| h e L3r )} = Ta?(r )
p P p
is designated as the “"external Hardy space™ (relative to Fp). It is clear that

f(z) + n(z) =h(z), zeTl (3.10)
so that

-
+
= R
[}
4

It is easy to see that T and T are both projections, onto ﬁ2(rp), a2(rp),

v

respectively, but that they are not mutually orthogonal. Using the properties

ALREA N R

of the Hardy spaces one may see that

1 < Ih

hol 2, .- 19
+ LA + L(l';)

+ +
<
ih_1 Lz(r;) th_1 Lz( P;)

o

;@525
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and from this we have, using (3.1), (3.6)

~ N

thi + 1h. 1

r) © th_! Lxr) T M)
< 2(1n 1 LZ(I';) < It LZ(r;)) < 2 thi LZ(I‘p y G1D
. N _
thi LZ(I‘D) < Int Lz(r’;) + ih 1 LZ(I";)
+ th i LZ(I‘;) < 1 LZ(I‘;)
+ + - -
AL MUY PR T VLR PO AL L WU I PR LWL PR
P P [ P
< /2(1n 1 LZ(P;) + Il LZ(I‘;)) < 2 Iht LZ(I‘p y +(3:12)
On the other hand (3.10) gives
thi 2p ) S 1hi w2ry * oMoy - (3.13)
P P P

A final point in our elucidation of the properties of H2(rp) and HZ(Fp) is
this: 1{f h e Lz(Pp) and h, h are its internal and external parts,

5
then hle(ra) and 'h'LZ(PT) can each be uniformly bounded in terms of
Ihle(P ) provided 0 < o < p < 1. Such a result is easily obtained using

P
arguments of much the same type as those used above.

Our next task is to identify the Hilbert spaces & and ¥ with subspaces

of ﬁz(Pp), ﬁz(rp), respectively.

Proposition 3.2: Let ¢ £ ¢, so that ¢' T, € L2(rp). Then § = ¢ so0 that

o|ry = Tor  ST(L2(r,)) = HA(Tp).

Proof. This follows from (3.8) and the fact that (2.14) is valid for all

¢ 9.
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LY,

Proposition 3.3. Let ¢ ¢ ¥, so0 that w‘ Pp € LZ(Fp) for p > a (cf. (2.5)).

o
1

i
-
-
»

Then ¥ € ¢ so that Y| r, = TY | r, & T(L2(r,)) = B2(Tp).

Proof. This follows from (3.9) and the fact that (2.4) 1is valid for all ¢ € ¥.
We see then that for each cardinal function p, the map P defined by
(2.20), and its inverse, P-l, are external + internal and
internal + external maps, respectively, defined on LZ(PD).
The following theorem is the basic result concerning "interpolation” of a
function f € ﬁz(rp) by a function ¢ € & on the zero set, Zp, of a cardinal

function p.

Theorem 3.4. Let p be a cardinal function and let p > a (cf. (1.4)). Let

h e ﬁz(rp); thus h may be extended into Int(rp) via

1
h(z) = 5is jrp BE) 4c. (3.14)

Then there is a unique ¢ € & such that (¢ - £f)/p 1is holomorphic in Int(Pp).
Moreover, there is a positive K, independent of h, such that

| o], < &|n| L2(T,)" (3-15)

Remarks. The term "extended” has a technical sense here because h| rp is the

5 155

L

limit in the Lz-norm, of hl To» P <p, as p *+ p.

B R

s
i

The term “"interpolation on Z;" 1s used advisedly since for each zero A

-fr’%,

of p, of multiplicity wu, $(2), ¢'(A),**+, ¢¥~L(A) must agree with h(}r),

wd s
y

AR

h'(A), **e,h¥"1()), respectively.

p v o ¥
P s
El
4 .

;P

..
s 3 a

Proof of Theorem 3.4. The uniqueness is quite straightforward. 1If ¢, ¢;

| LAY

were two such functions Iin @&, we would have

AR

> P

.
N0

r.v

-‘l’
.

.

a0

.

1

= N 2
s
4 L. a

L
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o5 Wty KT 4
e P P P
A on the one hand in Yp by Theorem 2.2, and, on the other, holomorphic in
Int(ly). The formula (2.4), valid for ¢ € ¥ and 2z external to Iy sgives
D) AR
p(2) 27i ‘T (z=2)p(L) ’
L p
N The properties of ¢ €¢ ¢ and p, together with the holomorphicity of (¢1—¢2)/p
{f~ in Int(lp), show that the integral converges and converges to zero. Thus
.
o $,(z) = ¢,(2), | Re(z) | > 0
- and extends, using the identity theorem, to all =z.
:j For the existence, we let Iy be a coantour similar to [p but with
;j' a { o {p. For I Re(z)l > o we define
1 h(z)dz _ ~rh
z) = = T{—] . 3.16
Y@ =5t e, oo T TE) (3:16)
J: The integral is convergent; p 1is bounded below on Fp and the square integra-
bility of h on T4y 1is a consequence of its membership in ﬁz(ro). Then,
still for I Re(z)l > o, we define
. . 1 h(g)dg
¢(z) P(z)‘p(z) P(z) 2,"1 jro (Z‘C)P(C) hd (3‘17)
Then we define ;(w), l Re(w)l < p, 1in agreement with (2.14), by
.\l‘:.‘ ~ 1 ~
e 0 =57 Ip %é&l dz = T($). (3.18)
. p
e From (3.16), ¢ € éz(rc), 80 VY € L2(rp). From the properties of p, ¢, defi-
ned by (3.17), s in L2(T,) and then ¢ € B2(T,).
E: Let w satisfy o <| Re(w)' < p. Then
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o(2) 4. . -1 p(z) h(g)dzg

z-w 4l ij z-w ]PO (z=5)p(2)

#a) = Zii Je dz
[}

= — e p(z) _ p(2)
4]2 er (V'C)P(C) JP zZ-w z-Z dz dc

h(g)dg 1 h(Z) dz (3.19)

1
= p(w) 2xni ]PO (w=-2)p(2) T 2w jFO w-G

Since h € ﬁz(rp), we have also h ¢ HZ(PO). Since w 1s exterior to T4

1 h(z)
2ni ]P wi dz =0
o
and we therefore have, from (3.19),
~ 1 ng)
¢(V) P(“) 271 ]ro (w_c)p(c) ¢(w)‘

It follows that ¢(w) provides an analytic continuation of ¢, as defined by
(3.17), 4into the region | Re(z)' < p. Thus ¢ 18 entire. That ¢ € ¢ may be
deduced from ¢(z) = ;(z), $ € ﬁz(rp), | Re(z)l < p, together with
¢(z) = p(z)¥(z), l Re(z)' > d. In particular, (2.14) follows from (3.18) as
soon as ¢ = ¢ has been establigshed.

There may be some question about the change of the order of integration in
(3.19). Let T, A be defined as in (2.11) and let Rp,A be defined as pre-

ceding (2.18). Since ¥(z) as defined by (3.16) is in L2(Tp)

- p(z) h(g)dg . p(z) h(z)dg
w2 e A Gopy o M e e I ey ¢
-1 h(Z) p(z) _ p(z)
4xl kﬂ: !ro (w-2)p(2) !rp,A z-w z~§ dz dp  (3.20)
because
p(z)h(%)

(z=w)(z-¢)p(%)
is integrable for ¢ € Iy, z € rp,A‘ Then we note, since Fc' i3 interior to

Fps that with pp(8) = 2(8), || < A p(0) =0, |z|>A, and a>|w],
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1 p(z) p(z)
" - = -
- 2ni ]R z-w 2~ dz p(w) PA( ).
~ p,A
12 Since h(Z)/(z-Z) 1is integrable on T4

&

h(C)PA(C)dC

bounded 1in terms of ' hl L2(T,)’ using the fact that p 1is bounded below on
0

h(Z)
11 —_——— = dzg .
" Aﬂljl‘a (w-2)p(%) J!‘O w-r ¢%
N
;F Since it is easily established that
. p(z) _ p(Z)
{ - =
ua | Uy -1p )| %2 @ | =o,
P,A p A
we conclude that the last expression in (3.20) converges, as A tends to =,
to the corresponding expression in (3.19), which 1s all we need.
2 Again for o <| Re(w)l < p we note that
i
» ¢(w)~h(w) _ 1 | h(g)dg  _  h(w)
: p(w) 2vi ‘T (w=5)p(2) p(w) °
\
{ But one shows quite readily that
3 h) o 1 _h(ede j h(z)dz
N p(w) 2wl T (w=0)p(%) 2xi °T - (w-2)p(2)
.1 since h(Z)/p(%) 1is holomorphic in the region o« <| Re(c)l < p. It follows
M that
0
3 o(w)-h(w) _ 1 J __h(g)dz
p(w) 2vi ‘T (g-w)p(Z)
?‘ Since the right hand side defines a function which 1s holomorphic for
-i IRe(w)l < p, the left hand side must be holomorphic there as well.
s
-; Finally, there is the bound (3.15). This follows immediately from (3.17) :
> -
and (3.18). For h(Z)/p(z) 1lies in LZ(PQ), and, since i
1 h(g)dg 3
, =i I, Gropny = ¥ ;
- N
i is the external part of this function, we see that w' T, € Lz(rp) and may be ;
K
y J

PURY IR | R B ]

‘

.
e
e

N

Y

)

5

!
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g for o > a. Then we note that :b, defined by (3.18), {s the internal part
of py relative to ¢, and, using the fact that p {s bounded above on To»
we bound I‘;Ip =| ¢’ p 1n terms of H"LZ(I‘ )’ which in turn 1s bounded in

P
terms of I h| Lz( ry)’ and that may be bounded in terms of | hl Lz(l‘p)’ which

completes the proof.

Corollary 3.5. Let h e ﬁz(rp) and let ¢ be constructed as in (3.17). Then

/p € Y, and for every 6 € 6.

2ni ' p(2) IR p(z) ° ’

Proof. The conclusion ¢(z)/p(z) ¢ ¥p follows from Theorem 2.2 since ¢ € ¢.

For a< o < p we have

1 8(2)e(z)dz  _ 1 h(2)
a1 frp p(z) ) er 8(z) ]ra Z=Dp(z) ¢ 92
N EiC) 8(z) ! h(z)8(z)dg
4w2 JPU pLE) ]Pp z-T dz dg 2ni Jro p(T)
- ._l_ ] egzgﬁgzzdz
271 I‘p p(z) °

The change of order of integration is established in much the same way as in the
preceding theorem. The last identity follows from the analyticity of 6h/p 1in
the region o <' Re(z)' < p together with by now familiar estimates on the

integrand as ' Im(z)l + o,

Theorem 3.6. For any cardinal function p there is a positive number K,

such that for all ¢ € 'p (and p > a, cf. (1.4))

W1 < Kp Bvr, . (3.23)

Hence | 1Ip and I lg are equivaleat on Y.

......

'ln'-‘;'j!;,.\l-'h.:”':\':. A e T Ve e v;";\.“!!.t'-;{‘z-. AR
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Proof. let ¢ € ?p and let p > a. Then
2 2 1
o Jp [v(z) | ‘ dz| Ty er Y(z)h(z)dz

1yt
o

where
2ny(z), =z e+Pp

ldz]

h(z) = 2niy(z) iz
~-2ny(z), =z € P; .

Clearly h ¢ Lz(Fp) and hence can be written
n(z) = h(z) + h(z), h € BX(T,), h € HX(Tp).

We claim that
JP v(z)h(z)dz = O.
p

For if T > p we can easily show that
Jp W@(2)dz = |1 (L)L = (c£.(3.9))
o] T
) 1 h(z)
]P ¥(g) 2ni jP z- dz dg
T P
¥ 4z 4z = 0

~ 1
= JF h(z) 2ni JP z-7
p P

because z on
analytic and | y(£)| >0 unifornly as | g| » =

Y(w)dw
-w

easy counsequence of
1
W) = gar I

Thus, using Corollary 3.5 with (%)

Re(g) > p.
v(z) = 6(g)/p(g), 6 €9,

valid for
and Corollary 3.5

as in Theorem 3.4

h

and ¢ related to

Pp is external to the region Re(Z) > ¢ 1in which ¢(3)

is

The last property is any

expressed as
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i 2 _ 1 ~ ! 8(z)h(z)dz _
e a4 p 2mi ]Pp ¥(z)h(z)dz 2ni jFp p(2z) -
:: 1 v(z)¢(z)dz _
| (c£.(3.22)) 7o er S O R
S < gty Myl < B ||¢|p we, (3.24)
ﬁ:} with B independent of ¢ since 14lg and I¢Ip are equivalent. But

'hle(F ) can be bounded in terms of Ivlp (see (3.11)) and (cf. (3.15))
P

:f: 11, can be bounded in terms of 'hle(F )" Hence there is a positive
N p
:f: number Kp» depending only on p, such that
\:\'\
19t < K .
35 o p IV,
_;: Using this in (3.24) we have (3.23) and the proof is complete.
N -
:2f Thus we see that ¥,, equipped with any of the norms I 1,, p > a, 1is
{ a representation of ¢', the dual space of ¢, duality relationship being
‘;55 expressed by <$,¥>, ¢ € 4, Y e ¥,
::i A representation of the dual space ¢' independent of p may be obtained
' in the following way. Let ¢ ¢ Y. Let p be a cardinal function and let p > «a
2 (cf. (L.4)). Let
=
o ¥(z) = h(z)/p(z)
B
—%;_ and we see, since p 1is bounded below on Pp, that h e Lz(rp). Write
P
\..‘-' ~ -~ -~ - ~ -~
‘}z h=h+h, he HZ(PD), h e HZ(PP), and we see that for every 0 e ¢
\i\‘
-_,\' ~
Y - 1 8(z) - 1 8(z)h(z)dz
P O, = 5ar Ir Pz M2z = oy [y (z)
"o P p
¥ (2)
AT 1 $(z
o * 7wt jl‘p °z) oy ¢
;ﬁ with ¢ constructed from h as in (3.17). We know that q/p € Yp Y. Define
:ﬁ: equivalence classes in Y by
::f:
e
aY «

[} ¥




LI

»

AN S

Iy L)
NN

voeyngty ]

“ats
L

LN

.
-
2

-28-

(W} = (b e ] <p,p> = <6,9> for all § e o).
Then

e, = v e (¢}
defines a norm ‘ ‘ $, on ¥. Gilven a cardinal function p, each equivalence
class {y} contains exactly one representative ¢/p from ¥, and
t{ybr, = to/pt, ,
so the map
{v} » ¢/p e (¥}
is an igometry between ¥ and ?p relative to I{y}y and 14/ply.
Defining
€= {({y}]|vev,
€  with the norm 1 1y 1is a representation of &'.
There are other subspaces of ¥, begides the space Wp which we have
described, for which the result of Theorem 3.6 remains valid. lLet a » 0 and
let
zZ C{z Il Re(z) I < a}
consist of a sequence of numbers:
Z = {zi| == <k < w}
with the property that
iﬁf (Im(zy) - Im(zp_g)) =d > 1.

Let Y, be the closed span in ¥ of the function

1
“((z) = z_Zk » -= < k < .
We have, of course, for | Re(z)l > a,

z t
() = Ee (@), e(t) =e .

L e i A S -,T
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N

Results due to Ingham [J] and Duffin and Schaeffer [F] show that for each

' sequence {cx} %2 the series

... @ Zkt

g(t) :zzw c e (3.25)
-

'_'_~l:: converges in 1.2 [—n,n], and there are positive numbers C, c, depending only
.

N on a,d, such that

t\‘

-

-2 2 < 2 2 2

. ¢ I 8 I LZ[-I,TI] < k‘-’z-@' ckl <¢C ‘ gl LZ["TI,'II]. (3.26)
',;;-:: We know that 1Iylg 1s equivalent to lgle[ . “]. Therefore for some other
J-.'.-‘ Ty

::;::- numbers é, E, also positive, with

g © Ck

o W) =] —, (3.27)
L k=z—= Y And 4

.\'.4 k

-

':f".:\‘ this series is convergent in ¥ with respect to 1! lgp and
{ 22 < F e |2 <, . 3.28
o ¢ v ¢ kz-‘”l k' v ¢ ( )
S Por each integer 2, (3.25), (3.26) show that for t € [-m,n]
_-:.':-‘: P 21‘"2“ zkt

, g, (t) = g(t+24m) 'kZ-..“ke ) e (3.29)
:'_-‘:} converges in L2 [-1r,1r] and
SN

~q'~b © 28nz

g -2 2 k |2 2 2

LYY

PO c gl 1.2[~7,x] < k-Z.... c. e | < o gyl 12[-x,x]’

go that
e -4tza -2 , . 2 ® 12 4ira .2 2
::?::. e c gl Lz[_""] < k-z—"'! ckl <e c Igzl Lz["ﬂ,n’].
:.a From this we conclude that (3.29) defines a function g(t) on (-=,®) such
s that for any p > a, g € Ly(-=,=), {.e.,
R

e -pt 2

e Pfg(r) e L%[0,=),

.n\".

- et g(t) ¢ L¥(-=,0],

j.:?:a Then, clearly, the series also converges to ¢ 1in ¥ with respect to | (PN
o and there are positive numbers C, ¢, depending on p, such that

.-.4!

o

Al

2
MR
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=2 2 2 ~2 2
1 < < .
3’" AR kZ_JCH Gl I (3.30)
_;.- Then from comparison of (3.28) and (3.30) we have
Proposition 3.7. The subspace ¥, C ¥ consists precisely of series (3.27)
o with ¢y € 9.2, the norms & 1 and 1 1, are equivalent on ¥, is closed
3 with respect to the topologies derived from 1 Ip. Moreover, the map
2
2 T: (e} ed” »ypey
\::: defined by (3.27) is bounded and boundedly invertible (on V¥,) with respect to

l{ck}llz and either Iyly or pi,, the bound depending only on d and

a.

This result will play an important role in the next section.
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_' 4. "Regular” Nonharmonic Fourier Series 1n LZ[—w,n] .

¢

o

.::-"_:j We have defined in (2.7) the lLaplace transform of a locally square

o 2

N 1ntegrable function g 1in Lp(-=,»)(cf.(2.6)),

}

¥(z) = ( 8)(2).

IJ_.

j:"_ Then with ¢(z) = (F£)(z), f € LZ[—n,n], we have seen that

:‘_'_'.: .

{'* <¢,9> = [ f(t)g(t)de. (4.1)

-

:_‘.:: As a consequence Iyl 1is equivalent to Igle[_" "]. When ¢ 1is restricted
T ’

:::::- to lie in ‘i’p, we know that Iyly 1s equivalent to N)Ip, which in turn is
N equivalent to

oY 1/2

a5 0 2pt 2 w -2pt 2

2y [__Jw e g(e)| “ae + e | ety | d;l

S

.‘\. E .

Lol 12ee
( p

- -1

:‘;‘? We see then that, for g e & ‘Pp, Iglp is equivalent to 'S'LZ[_“’."]'

"
".-\

-y

::'.-: Proposition 4.1. If p is a cardinal function, S"l‘l’p 1is dense in Lz[-n,n].
0 Proof. Since (2.33) {is valid for each f ¢ Lz[—n,'n] we need only show that
RN

:‘_:.:: <$,¥> = 0, for all ¢ e ¥, (4.2)
e implies ¢ = 0. But for ¢ € ¥p

¥(z) = 8(z)/p(z), 08 € &,

AN

B and then for p > a

~.

Ly .1 $(2)8(2) ¢
Lo 69> = 59 ¢ 2(2) dz = <e,p >. (4.3)
SR
:::::: If (4.2) 1is true, Theorems 2.2, 2.3 show (4.3) equals zero for all 6 € ¢ and
-~ then Theorem 2.5 shows that ¢(z)/p(z) = O which implies ¢(z) = 0 and we
a

."' have our result.
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We will see now that this proposition is really a statment about the
completeness of certain complex exponentials in the space LZ[—w,n].

Let the points in Zp, the zero set of the cardinal function p, (Zp may
be shown to be non-empty quite easily using familiar theorems (cf. [K]) about
entire functions) be indexed as 2z,, k € K, where K 1is a countable index
set, and let 1y be the mulciplicity of 2z,  as a zero of p. We denote by Ep

the set of generalized exponentials

z t z t u -1l z t
{e k , te k ,eee,t k ok | z, € Zp} (4.4)

and by [Ep] be span of these functions in L2[-n,n]. It will be recognized
immediately that

[Ep) = £71(Rp)
where Rp is the subspace of ¥p consisting of rational functions

p(z) = ———:g:;

where o(z), t(z) are polynomials in z with deg o < deg t and p(z)p(z) € ¢

is entire. The completeness of in L2[-n,n i.e. the fact that
? ? b4

[Ep] = LZ[_“)“]

1s equivalent to the denseness of Ry in Y by virtue of the remarks which we

|

have made above. Now R, is complete in ¥_ just in case, for ¢ e ¢

P
<¢,D> = 0’ p € R-p; -3 4’ = 0. (4'6)

That 1s the case in just the argument already given in Theorem 2.5 with the

rational functions Yc 1in place of p: {if (4.6) were true then ¢/p would

be entire and hence zero, 8o that ¢ = 0. Thus we have

Theorem 4.2. If p 18 a cardinal function then Rp 1s dense in ?p; equiva-

lently, (4.5) 1is true, i.e., Ep 1s complete in LZ[-n,n].
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This is, of course, not a new result (see, e.g. [E], [F], [K]) and is included

here simply to make our presentation self-contained.

The functions (4.4) comprising Ep have the property of strong linear

independence in LZ[-ﬂ,w] just in case no such function lies in the closed span

of the other elements of Ep; in the context of ¢ and Tp this 1s equivalent
to the constructibility of the Lagrange functions 8k,v € ¢, ke K,
0 < v<y, with the property

0, L #k
(zp) = 0, 2=k, j#v
1, L=k, jJ=v.

(1
qk,v

Since it is easy to see that these can be constructed in the form (the Cv,n

are complex scalars)

usv c\) n
Q (2) = p(z) [ ——
’ n=l (z-z k)

we will regard this strong linear independence as established.
We see, therefore, that Ep, forms a basis for Lz[-n,n] in the sense of
constituting a complete, strongly independent set. A decidedly more ambitious

enterprise is to give conditfons sufficient in order that E, should be a

P

Schauder basis for Lz[—u,n], i.e., denoting the elements (4.4) of Ep by
ek, vs keK, O0<v<y, that each g ¢ Lz[-n,n] should have a unique con-

vergent expansion

TN 4.7
& k€K v=0 gk,v ek’v ’ N

the 8k, v being complex scalars. The uniqueness is already in hand, actually,

because it 18 easy to see that if it were violated for some g € LZ[—ﬂ,n] the
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ek, v could not be strongly independent. Thus it is the existence of a con-
vergent series as shown in (4.7) which is the main question. It appears to us
that the most usable sufficlent condition, stated in the context of our develop-

ment, is the following. We recall ([N]) that p 1is almost periodic in a strip

' Re(z)' S B just in case for each € > 0 there is a positive number £ =
2(€,B) such that 1In each interval [g,g+L] of the real axis of length L > &
there 13 at least oune number n such that

| p(z + 1n) = p(2) | < ¢ (4.8)

uniformly for all z such that |Re(z)| < B.

Theorem 4.3. 1If the cardinal function p, with related a as in (1.4), is

almost periodic in some strip I Re(z)l <8 with B > a, then E is a

p =52

Schauder basis for Lz[-n,n].

Proof. TLet a < p < B and let Cy be a simple path joining Pp to Pp which

does not meet Zp. Then for some €0 >0

| p(z)| > €., 2z E C0
Let 0 < € < gg/2 and let 2(e,B) be selected as indicated above. Let
L>2+ 3§, where § 1is a fixed non-negative number, and for each non-zero

integer k = 1, #2,c¢+, let ng € ((k-1)L + §, kL] be such that (4.8) holds

with n replaced by ng. Then let

Ck = {z + 1nk‘ zZ € Co}, k = 21, #2 ee0, (4.9)

and it 18 clear that for all such %k

| ey >e, zeq . (4.10)
For each positive k let Tj y consist of the portion of T, between Cp_)
and G, and for each integer pair k,f, k > 2, let rp’k,z be the portion of

Fp between C and Cy; thus Pp'k = rp,k,k-l' Define also
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Rok ™ ok ¥ G 7 Geerr K= 1i2u3e0y

R r

c, -C K,2 = 31,32, 600, k> &.

ok, 2 okt TG TG

For z outside Rp x,6 ¢, which includes l Re(z)| > p, define

¥(2)

4.

1
b (2) = 5= |
k,2 2mi Rp'k’z

Extended by analytic continuation to C - (Z, \ Int Ry k,0)s Vk,2 € Rpe

Similarly define Ve, 2 € ¥, but not necessarily to ?p, by

¥(z)
p,k,8 = Z
let p < 0 < B. It is an easy consequence of the properties of the 2 spaces

~ 1
Y, 2®) = 207 Jr dc-

in a half plane (see e.g., [{B]) or the Carleson measure theorem ([L], [M])

that

lim |y - %k’zl s =0 (4.11)

k +o0

Since Y(z) = ¢(z)/p(z), ¢ 2’3? the Riemann-Lebesgue lemma shows that

Hm ( sup|w(z)| ) = sup ¢ =0
'kl-vu Ceck' | |k|+m k
Since
- (ck+cz)£(C)
' “‘k,l(Z) + wk,l(z) ' < an(z,l‘p . z—)

where 2(C) 1s the length of C and (I = distance)

d(z,Pp’k’l) = CEx;l‘in | C-zl
Pk, L
it is clear that
iiﬁ We,e ¥,2le =0
ko

and therefore, from (4.11)

A2
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lim ¢y - ¢ 1 =0 .
K k,2° 0
Lr—m

If we let
¢ g’ wk,z gk’z
then Y g € R, => gy g € E;. Since [My—yy o0, is equivalent to

'8'8k,2'L2[_"’"] and since

a -1
g = z 8, 8; © i’
- 1 y(z)
Y, = 5= | ~22 dg € R_ .
3 2ni Pp,j -z P
we have
g = j:z-w gj ] gj € Ep .

convergent in Lz[-n,n], and the proof is complete.

We will have more to say about the significance of the assumption about
the almost periodicity of p in the concluding remarks of Section 5.
Series in the functions ek, v described by (4.7) have been referred to in

the literature as nonharmonic Fourier series. Much of the interest in such

series centers on the question of whether or not they form a Riesz basis for
Lz[—t,l]. A sequence of elements, {xx}, 1n a Hilbert space X forms a Riesz

basis for X 1if it is a Schauder basis for X and, with

x= J ¢ (4.12)
kekK k"
the unique series representation of x 1in terms of this basis, there are posi-
tive numbers b,B, independent of x, such that
b 2 x| 2 <] Ja] <8 |x|?. (4.13)
ek
It is evident that {x} 1is a Riesz basis if and only if the map from

{ey} € % to x € X defined by (4.12) 1s bounded and boundedly invertible.
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A generalization of the Riesz basis notion is tuat of a uniform decon-
position of X. Suppose X, k € K, 1s a sequence of subspaces of X. If
every x € X can be written uniquely as an X-convergent geries

=3 &, £ €X, (4.14)
“ k;x k k= Tk

and, with b,B positive and independent of x

-2 2 2 2 2
b | x| © < kgK [ gk‘ <B7| x| ",

then we will say that the X, form a uniform decomposition of X. A special

case occurs when {x} 1s a Riesz basis for X and X, = [x] so that for
each k

% T %k X
for some complex scalars ¢, k € K.

It is well known that if {xx}C X 1s a strongly independent Schauder
basis for X, and 1f = 1s a representation of X' relative to the bilinear
form <x,g>, then there are unique £, € Z such that

1, k=2

<xk,££ > = k,2 ¢ K.
0, k # 2

When {x } 1s a Riesz basis for X, {g} 1s a Riesz basis for EZ. The com-
parable notions for a uniform decouposition are as follows. For each k we
have

K=K @K
where X, 1is the closed span of the Xy, £ # k. Thus there is a unlyue decom-
position

xR o oe X, RoeX .

Let
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4

oy = ¥

Pl B

-

Then Py 1s a bounded projection with range Xy and I-Pp 1s a bounded pro- R
|

jection with range Xy. We define Zj to be the range of the dual projection 5
12

[
— il

Py on = and we define £, to be the range of I-P, in EZ. Clearly for

]
L
.—a.

X € X, § € 5 we have

ey Pk A

<x, 6 = <Bx,(I-PL)E> = (B, ~PL)x,E> = <0,£> = O.
and we have a similar relation for x € Xy, £ € Ek.

If for every x € X we are assured of the existence of a unique, con-
vergent representation (4.14), whether (4.15) holds or not, we will say that the
X form a Schauder decomposition of X.

Let us now place Theorem 4.3 in the context which we have just developed.

For each integer k we define a linear operator, Py, on Wp, by

= —l—- YﬁElQS
(P ¥(2) =55 Jg =L Ext(R ).

Setting
wk(z) = (Pk¢)(z). k = 0,%],%2,00-

= = 3: t o ee .
vp,k pkvp . k = 0,*1, 2, (4.17)

‘p,k congsists of rational functions p(z) = a(z)/1(z), where o(z) and 1(2)

are polynomials with deg o < deg 1. Moreover, p(z)(o(z)/1(z)) 1is entire.

The dual operators defined on ¢ will be called PL. Their definition is

1 ¢(g)dg
8 (2) = (B 9)(2) = v(2) 57 [g (z-0)p(g) °
p,k (4.18)

z € Ext(R'

L k = 0,%1,%2,000

and we define

_. .. R

A ..~.. IR -; R . \
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°p,k = PL@, k = 0,%£1,%2.00 (4.19)
The proof that ¢y, as defined here, has an entire analytic continuation lying
in ¢, so that ¢,k 1s a subspace of ¢, follows much the same lines as
Theorem 2.3

It is easy to see that the operators Py, PL do not depend on the par-

ticular choice of p > a.

L
Proposition 4.4. The operators Py, Py are projections on Wp, ¢, respec-

tively, and for

beY o bed, LEk

we have <¢,y> = 0. Moreover, P, 1s the dual operator to Py in the sense

that for ¢ € ¢, ¢ € ¥,

<PLo,¥> = <$,Pyi>.
The proofs are easy and essentially the same as those given in connection

with the operator calculus in [N] and are omitted.

Theorem 4.5. Under the hypotheses of Theorem 4.3, taking &, described prece-

ding (4.9), so that & > 1, the spaces Yp,k described Ez_(4.16), .17

form a uniform decomposition of the Hilbert space ¥

P

Proof. We need a standard parametrization of the paths Ry ke Let the points

+
where C, wmeets Fp and Fp, respectively, be o kr Tp,k° We construct a

map

e T 5 (8
from RD,O onto Rp,k as follows:

........
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¢ + ink, g € LO
z,(¢) =
et (nk—l - n_l), gecC, .
+ -
The vertical sides of R,y are T,y , Tp - We define
r+ - r+
+ _* p,k p,k-1 +
r -r
p,0 "p,-1
g () =
- r-
= - p,k"l -
+ — -
S € ] =), el ,
T r
p,0 "p,-1

The construction of the paths Cy 1is such that the lengths of rp,k' Fp’k,

i.e., | Tok = rp,k—1| and | ok = rp,k—ll , always lie in the interval

{6,2L-8]. It thus follows that | Ck(C)I is bounded and bounded away from zero,

uniformly with respect to k and g € Cy. Write
d <| ;k(c)| < D. (4.20)
Let ¢ be an element of ?p. Then
- S § Y(w)dw
R IORS TR W=l (4.21)
€ Ext(R .
z ( p’k)
Setting
w = g (8), do = @ (Z) d
we can re-express (4.20) as (suppressing the argument ()
V(g )g! dg
1 k' 7k
(z) = +— | ————, z € Ext(R_.,). (4.22)
*k 2ni Rp,o z Ck P,k
For o> p we will estimate
T 2 v 2
omwts =Ll lwe|f e
k k: )

Let us note that for fixed ¢ ¢ Rp,O’ (%), Cr-1(%&) have the same real part
and

N = .'..'.\"-_'_'\A_'.' R R _‘. \. ~ T

I P L U, S T P T R Tt T N
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o
AR
N
::ﬁ- =41~
.:3 Im(g (2) - ¢ _,(8)) > 6> 1.
}Q. Then we estimate
-~
e ¥(g, )8,
2 k’ 7k 2
Z Jr“’k(z)l |dz|’—“ It - d" dz
N ke “Tol Fp0 PR
i :‘:’ 2 o c.)
o <27 . (] k"1 2} ac| | dz | )1 de
5 e O Ee R E M R RI R
\ 2
DR _ L)) = ¥z, )

o p,0 k 2 dz al ¢
i~ 4ul k-z.» JRp,o ]I‘o' z-C k' | dz| 4] ¢f
7\
'\ 2
> p 2R o) = w(ck) 2
¥ " e (e I el
~- p,0
- 2 2
- D l(R )
AN , 0 L dr
~ < J p {2 ¢z, ) (4.24)
E 2’ ( i.nf l p(z)| )2 S (o_u)2+r2 CER J k | ’
L
-, p k
et where
2 ¥(z) = 6(2)/p(2), ¢ €@ .

Clearly our task is to estimate the sum in (4.24). Let
2 . - (T
- W = )

k=-= & W

From (4.23) and the inequalities (3.28) there are positive numbers E,é such

that

t"‘..’:.."_-.'ti. l’ ’

3y

~2 ~2 v 2 ~
et < I feg )| T <

Then it i8 easy to see that
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1 y ® 2 ,1/2
S Wl < 2—‘; 1t (kl_m|¢(ck)| )
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and we conclude that

-]

R CRLEE

k=—>

the constant ¢ depending only on § > 1,

¢k Then from (4.24), (4.25) we have,

2
LA

L *| ez

[0} =k=-}-:oo JI'C! wk(z) '

ofur % 2l o] 2,

2 )( inf [p(2)| ) ‘ W' o
ZERp,k

8n - (o—a)2+r
EE vl U] DA

To obtain an inequality in the other direction we note that

vt = /r ' *(z)l 2' dz | = Jr ' ¥ (2) | 2| dz |
= g ¥ &c gc'

) J
k=—o 2n1i Rp 0

k=—-o
= R KT

Aw o k=-® f=-w RP.O RD-O (z-ck)lz-CL:

¥ (VT 0Ty | dz |
(z-ck)Zz-cl)
wllcz)c;

z-cz)

!rol

n

| ¢z |

1 -
==k dz dg

4' p’o D,O I‘a k=~ L=—c0

W (5T

- _lf lg Jg Iy ( § Tty

k=-w L3~

) w v, (Z,)
0 k
< ; ( swp | ] z--ck I i ).
TeR o' ki-= X

Since

1 p(2)¥ (2)

1
——— e, — dc
p(ck) 2wi I‘0 88y

v (5) =

(4.26)

]' dzI dg E?

| o] i (4.25)

and not on the particular sequence

X-n. PR L\Lﬁ; S 1_}



we have

sup | p(z) |
1 w® dr 172 Z2Elo

% (5 )| < (] ———=—=)"'° (1t ) w1
' S l 2n - (a—a)2+r2 zeRz olp(z)l ko

and then

sup | p(z) |
v 2 1 dr zePa
< P
kz_-l wk (ck)| 21'2 4 (o-a)2| 2 (zeinflp(z)l )

P,k

< 2
e Milo -
But we know from (3.28) that

oo 'P (C) -3
k*’k? 2 ~2 2
DI TR S Y

with ¢ depending only on 6 > 1, and hence

2 2
T P HRo0) ( sup 17 ALY i)
a 4!2 ZeR 0 k=—-o z-ck o
P,
)2 22

< 2 kz-o’ *k(ck)l :

2 2 ~2 sup | p(z)
D l(RpLO) c (j° dr zerol I

4

< 2
8% =® (0-a)“+r

2
5 ) ( Inf [ p(2) | ) Lol
z€eR
2 % 2 Psk
R 9 D (4.28)
which completes the proof.
We now address ourselves to the question as to when the individual func-
tions (4.4) form a Riesz basis for L2[-w,n]. The next theorem treats the case

wherein the cardinal function p 1s almost periodic and the zeros, zg, of »p

are simple.
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Theorem 4.6. Let the cardinal function p satisfy the hypothegses of Theorem

4.3 and let the zeros, zy, kek, of p be simple. Suppose there are positive

numbers r,R such that

r<|p'(z)| <R, keKk. (4.29)
Then the functions
b (2) = —- (4.30)
k z-2, *

form a Riesz basis for ?p‘

Remark. The right hand inequality in (4.29) follows, of course, from the boun-

dedness of p 1in strips I Re(z)| < p.

Proof of Theorem 4.6. From Theorem 4.3 the functions ezkt form a Schauder

basis for LZ[-u,w]; equivalently, the functions (4.30) form a Schauder basis
for !p.
Now consider sequences of coefficients {akl k e K} € 8¢, and define the

operator T : g * 'p by

€R ZT

a

T({ach) =, tk = L s (4.31)
The domain of T consists of all {ap} for which the right hand side is con-
vergent in Yp. Thus T 1is densely defined (look at finite sequences), one to
one (by strong independence), and has dense range (by completeness). The

adjoint map 1is

T $p £ > {¢(zk)| kK € K}. (4.32)

Since
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p(z)
P (zk)(z-zk)

¢ (2) =
is the unique element of ¢ biorthogonal to ¢, 1.e.
1, k=1,
¥y = Gy T
0, k=#2,
and ¢(zg) = Sxg, it is easy to see that T* 1is defined on sums } bed(z)

and hence has dense range. That it is one to one follows from the proof of
Theorem 2.5.

Now, in fact, T and T* are both bounded. The boundedness of T*
follows from the fact that, for ¢ € &, e "%?¢(z) 1lies in the Hardy space
H2{Re(z) > p} and the fact that the zeros z of an entire function ¢ € ¢
have a maximum density; given L > 0O, there is an M > 0 such that the number
of zeros zp 1In any rectangle | Im(z—a)| < 2, ‘ Re(z), < p does not exceed MR
when £ > L. The Borel measure on Re(z) > —p defined by

u(zk) =1, z, € Zp .

u({rRe(z) > -p} - Zp) =0,
is then a Carleson measure ([L}, [M]) and there is a B > 0 such that for

e

DRI TR
i.e., T* has range entirely included in l% and is a bounded linear trans-
formation. But then T = (T*)* is a bounded linear transformation.
To show the Riesz basis property it is only necessary to establish that
rl is bounded. We have seen from the boundedness of T that if (ay} € i;

then
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:::‘:' \p(z) = 2 zi: S 4
iy kek k p

;::":j and we have

}

< 2

! <|T a .
:LTE'.‘ H'P ' |kgK’ k|
o Now let {by} € f. Then
\':-:'
N *-1 p(z)

- b = b
'-.~-. (T) "y} kgl( khe () kéx k p'(z )(z-z ) °
o - 2
\.: the domain of ('1‘*) 1 being those {by} € 2y for which the series on the right
K~
2N converges. But (cf. (2.20) for definition of P)
o b, —2Lz) o) T ( Py ) L
'l - ' -

\\“'__ k&R k p'(z)(zz) ek P'(z) ' z7z

..u'_‘o b
o k 1 Kk
_.‘_‘- = P - PT ——— .

W Gy ) i) = ol s |
[

N Since the numbers p'(zy) are bounded away from zero, the map

o

P

N b

Y .

0w c b = -5

S2 (o} {p'(zk) }

WO is bounded on fg. Thus

Wk

..-_‘.:,

532 (tH 1w ) n{———-b“ } = PTC(b, )

o - -

N " p7(z,) K

'

=3 l,-e.,
o
\f}. * -1

e (T) " =prc.
P Since P,T and C are all bounded, we conclude that ('1‘*)—1, and hence
+ dg'

- . T °, 1is bounded. Hence {(z-zx)~l} 1s the image of the standard orthonormal
e
:::':j basis for 22 ynder the bounded and boundedly invertible linear transfor-
‘:_., matfon T and we conclude that {(z-zk)-l} is a Riesz basis for V¥,
"' \
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Corollary 4.7. Under the hypotheses of Theorem 4.6 the exponentials

(e*k® | k € K} form a Riesz basis for L2[-w,n].

This is an immediate consequence of the fact that for g e Ly(-~,») sguch

that (g) = ¥ € ¥, the norms and 1yl,, or Iyly, are

Igle[-n,n]

zkt).

equivalent, together with (z-‘zk)_l = (e




ety
P
t, s

~ XN .
N ..l.l'l'l.ﬂ
;}I/Ilhﬂd!

-

PPN AALN

XN

c v

LR N N
St
PR RN

n‘.‘

r ] L
s

LA X

T

L5848

. ~‘( , ..l

AT
WY

]

LA
[N

A

—48~

5. Concluding Remarks.

If we agree to refer to the Schauder bases of exponentials {ezkt} for
Lz[—ﬂ,t] assoclated with the zeros of a regular cardinal function p, as
defined in Section 1, as generating regular nonharmonic Fourier series, we
obtain a class of such series which overlaps, but is neither included 1in, nor
includes, the class of sach series studied in the familiar literature on the
subject. In the classical literature, which includes, e.g. [C], [D], [E],
(F), (F}, {J], [0], and numerous other contributions, the emphasis lies on
properties of the sequence {zy}; properties such as density, asymptotic gap,
proximity to the imaginary integers 1k, etc., are the starting point. What

we call the cardinal function, p, 1s constructed as an infinite product

p(z) =[] (1-2),
11; Zx

ordinarily with grouping of terms to ensure coanvergence. The properties of p
are then deduced from the properties of the sequence {z}.
The most frequently studied sequences {zy} (see, e.g. [E], [0]) are

those imaginary sequences for which (letting K = the integers now)

1
e PP RERCIER RS 4 (5.1)
Not 3ll of these nonharmonic Fourier series are encompassed in our framework.
The property of prime importance for p, referring to our framework now, is

that p 1itself should not lie in L2(rp) but, for each zero 2z of p,

p(z)
¢k(z) = pv(zk)(z_zk)

should lie in that space. This requirement, by itself, does not make p

bounded and bounded below on Ty as in our work here. Roughly speaking, it
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admits functions p(z) whose growth on Iy 1s like | z| W owith =12 < u < 1.

Such growth 1is obtained for sequences (5.1), e.g., 1f

zl(~ik(l—2_ﬁ(—r)’ 'k|+m.

Consequently, such cases are not covered by our theory as presented in this
paper; we hope to be able to modify our methods to cover them.

To give an idea of what our theory does encompass, we first need a
reasonably large class of cardinal functions which meet our conditions. Such a
class may be constructed as follows. Consider the distribution, d, with sup-

port in [-w,¥], defined by

d = 5(“) + coé(_") +k21 C G(Ek) + f, (5.2)

where §(g) 1s the Dirac distribution with support £, ¢4 # 0,
c, | < = .
L el
the points &y are distinct points in (-wm,n), and f ¢ Ll[—w,n]. Using

results from [N] it may be shown that the Fourier transform of this distribu-

tion
p(z) = <d,e®>, (5.3)

is almost periodic in any strip | Re(z)| <Sp, p>0, in the complex plane. It
is also easy to see that the conditions (1.3), (1.4) are met for some a > O.
Thus p(z) as defined by (5.3) is a (regular) cardinal function as defined in
this paper.

A very interesting case, not covered in the classical treatments {C], [D],
and [E], but presented as an unproved theorem in [F], occurs when the series

in (5.2) 1is finite, say of length N-1, and
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Ek = -x +-% 2n , k =1,2,°¢¢,N-1. (5.4)
In this case
(z) = e+ c e "? +Nil c eEkz +]" et f(t)de
P 0 k=1 k L.
- T ozt
= po(z) + 1" e’ f(t)dt. (5.5)

The zeros of py(z) then take the form zyg = 1og(cj) + 2721, jJ = 1,2,%++,N,
-o» { L { = ywhere the £y are the zeros of the polynomial

CN + cN_lcN-l + oo + clc + CO

and the principal value of the logarithm is intended. The zeros, zjyes of
p(z) are easily shown to be asymptotic ta the zyg as I zjll + =, Theorem 4.6
applies here 1if the zyq are all simple zeros.

An important case also arises for p(z) having the form (5.5) but with the
g not rationally related to w, so that, in particular, (5.4) does not
obtain. 1In this case we cannot give a simple asymptotic expression for the
zeros of p(z) and they may cluster in various complicated ways as l zl *> o,
Nevertheless, p(z) remains almost ,2riodic in strips | Re(z)| <p, p>0,
and Theorem 4.5 applies to show that Lz[—ﬂ,w] admits a uniform decomposition
in terms of finite dimensional subspaces spanned by generalized exponentials
assocliated with the zeros of p. This result has a number of uses in connection
with the theory of linear symmetric hyperbolic systems of partial differential
aquations having wave speeds which are not rationally related (see, e.g. [P]).

It is clear, when p(z) has the form (5.3), that the associated genera-

lized exponentials are the exponential solutions of the scalar neutral

functional equation
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‘

‘.. ® n

- wit+m) + c wit-m) + § ¢ w(t+E ) + | f(s)w(t+s)ds = O. (5.6)
Tl 0 k=1 K x -

ﬁf: As such, these generallized exponentials, restricted to ([-mn,r], are the genera-
-l
lized eigenfunctions of the operator
- (Aw)(x) = w'(x) (5.7)
';: with (A) consisting of those functions w 1in the Sobolev space Hl[-n,n]
which satisfy the boundary condition

LN

o ® ’

i w(n) + cow(-m) +k21 e W) + l“f(s)w(s)ds = 0. (5.8

}i It is well known that when c¢g # 0, which we assume, the operator (5.7) genera-
5 tes a strongly continuous group of bounded operators on Lz[-u,n]. This group
';3 has been studied in ([Q], where it has also been shown that there is a very
‘;f strong connection between any exponential Riesz basis for Lz[—u,u] and a

- corresponding group of restricted shifts, or translations. This is another
':3 toplc which we hope to return to at another time.

]

f:‘ In this connection it 1s, of course clear that our methods are quite simi-
v lar to the methods used for studying the spectral properties of differential
Q.}

LS

-:} operators which involve various contour integration methods applied to the

¥

-\J

N resolvent operator (zI.--A)'1 (see [R], e.g.). The meromorphic function

AR 1/p(z) plays wuch the same role as the resolvent does in that theory. In fact
ﬁ:. it is shown in [Q] that for p(z) having the form (5.3), and A the operator
. (5.7) with domain characterized by the boundary condition (5.8), that for
.. = (w) e Yp, we have

!\.a
Jij -1
v(z) = ((zI-A) "w)(0).

-".n

ENS If one forms the distributional solution w(t) of

)

:j

N
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-
w© n
- + . t =
| w(em) + cque-m) kzl c w(t+E, ) + 1" E(s)u(t+s)ds = 6 :
N it may be seen that 1/p(z) s the Laplace transform of w. This leads to the j
. L
- formula. i
1 -1
. —_— = I - A § 0
i oy " (1 - W8 (),
x if (zI-A)'l is appropriately extended to H‘l[—n,w], which includes the
i

distribution 6(0) .
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